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We incorporated S2B and S1A together with national DEM data into the XGB-GA model to estimate the mangrove AGC 

in an Indonesian mangrove area for the first time. The XGB-GA model outperformed other well-known ML models in 

mangrove AGC retrieval at Loh Buaya. The proposed hybrid XGB-GA with 12 optimal features estimated the mangrove 

AGC with the highest prediction accuracy for the first time in the Indonesian mangrove ecosystems (R2 = 0.758, RMSE 

= 15.40 Mg C ha 1). Interestingly, we found that new vegetation indices derived from the S2B data, such as the 

Normalized Difference Index (NDI45) and the Modified Chlorophyll Absorption in Reflectance Index (MCARI) were 
sensitively detected mangrove AGC in the Indonesian mangrove ecosystem.
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Mangrove Forest Characteristics

Mangroves in the study area also had varying DBH, 

ranging from 7.48 cm in plot 5 (Rhizophora apiculata) to 

19.21 cm in plot 27 (Rhizophora mucronata) with an 

average of 12.67 cm. Based on the calculated results of 

AGC listed in Table 3, the lowest carbon stock was 13.63 

Mg C ha−1 in Plot 14 while the largest carbon stock was 

found in Plot 27 with 143.94 Mg C ha−1. An average AGC 

was observed at approximately 57.51 Mg C ha−1. The 

dominant species in the sampling plots were Rhizophora 

apiculata, which was common in 23 of the 50 plots. The 

calculation of carbon stock is influenced by DBH and 

wood density, therefore, although Rhizophora apiculata 

had the lowest DBH, this is not corresponding with the 

lowest carbon stock due to its wood density being higher 

than Ceriops decandra.

Figure 1. Study aims to test a novel Machine Learning (ML) method for 

mangrove Above-Ground Carbon (AGC) mapping

Figure 2. Mangrove field measurement

Model Comparison and Important Variables

Table 1 compare the model performance of the three ML 

techniques with all input variables derived from S2B MSI, VIs, 

and S1A together with SAR transformation as well as DEM and 

the proposed hybrid XGB-GA model with the optimal 12 features. 

The hybrid model XGB-GA yielded the highest performance in 

both the training phase (R2 = 0.857) and the testing phase (R2 = 

0.758) and had an RMSE = 15.40 Mg C ha−1 for mangrove AGC 

estimation in the study site. The XGB-GA model incorporating 

the S2B (6 MS bands), and VIs (5 bands) together with DEM 

data achieved the highest performance, reflecting a good fit 

between the model estimates and field-based measurements. 

The next-highest performers in the testing phase were the XGB 

(R2 = 0.572) and the RF (R2 = 0.529) models. In contrast, the 

SVM model (R2 testing = −0.039) was unsuitable for estimating 

the mangrove AGC at Loh Buaya (Table 1).

Field Data Collection

Data were collected from 50 plots sampling 

across four dominant species of mangroves 

found in the study area: Ceriops decandra, 

Lumnitzera racemosa, Rhizophora apiculata, 

and Rhizophora mucronata. Plots consisted 

of 10 m x 10 m squares established during 

the field campaign of July 2022 (dry season) 

using a technique by (I. W. E. Dharmawan et 

al., 2020) (Figure 2). Measurement in every 

plot comprised coordinate tagging using a 

handheld Global Positioning System (GPS: 
Garmin 64s series with ± 3 m x-y accuracy), 

Girth at Breast Height (GBH), percentage of 

canopy cover using hemispherical 

photography, mangroves species, and 

substrate identification. MonMang, a 

smartphone logbook application for 

mangrove surveys developed by Lembaga 

Ilmu Pengetahuan Indonesia (LIPI) (I. W. 

Dharmawan & Sastrosuwondo, 2014) was 

used to record field data.
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Mangroves play a crucial role in providing ecological and provisioning services, such as sequestering atmospheric CO2 

(Kumari & Rathore, 2021) and providing habitat for shorebirds and fish (Buelow & Sheaves, 2015). However, they have been 

lost worldwide due to human disturbance, particularly in Southeast Asia (Fauzi et al., 2019). Sustainable mangrove forest 

replantation and management are essential. Mangroves have biophysical parameters related to ecosystem health and 

dynamics (Sani et al., 2018). Accurate measurements of these parameters can be achieved using field investigations, but this 

method is laborious and time-consuming due to the complexity of the mangrove environment and dangerous fauna (Saintilan et 

al., 2022).

This study aims to test a novel Machine 

Learning (ML) (Figure 1) method 

proposed by (Pham et al., 2020) to map 

and quantify mangrove above-ground 

carbon (AGC) in Indonesian mangroves 

using multisource free-of-charge remotely 

sensed datasets. The model integrates 

extreme gradient boosting regression 

(XGB) and genetic algorithm (GA) to map 

AGB mangroves in Northern Vietnam 

using optical and SAR data combined 
with field sampling.

Remote sensing offers a complementary 

tool for mangrove carbon measurements, 

offering a synoptical overview, spectral 

and spatial resolution, and ease of data 

capture (Tran et al., 2022). The use of 

remotely sensed optical and Synthetic 

Aperture Radar (SAR) images has been 

successfully applied to develop mangrove 

carbon models. However, there is a need 

for improved accuracy in mangrove 
carbon models (Wang et al., 2019).

We adopted an innovative ML 

framework introduced by (Pham et al., 

2020) to estimate mangrove AGC. 

However, in this study, a combination 

of multiple EO source data with free-

of-charge Sentinel-2B and Sentinel-1A 

imagery and a national DEM as 

elevation data was used to improve 

the prediction accuracy. Several steps 

were conducted to derive and test 

models as follows: (1) Pre-processing 

and processing of the multiple EO 

sources, (2) Creating training and 

testing datasets by combining field 

sampling data and EO data extraction, 

(3) Evaluating Machine Learning 

models, (4) Selecting the optimal 

variables using the Genetic Algorithm 

and the highest ML model, (5) Model 

re-evaluation for mangrove AGC 

estimations in the study area. The 

flowchart of this study is shown in 

Figure 3.
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No Machine Learning Model R2 Training (80%) R2 Testing (20%) RMSE (Mg C ha−1)

1 Extreme Gradient Boosting (XGB) 0.892 0.572 16.45

2 Support Vector Machine (SVM) 0.747 -0.039 38.74

3 Random Forests (RF) 0.807 0.529 18.11

4
Extreme Gradient Boosting optimized by Genetic 

Algorithm (XGB-GA)
0.857 0.758 15.40

Table 2 compares the effectiveness 

and performances of the XGB-GA 

model in four scenarios (SC) for 

mangrove AGC estimation using 

difference integrations of S2B, S1A, 

VIs, SAR transformations, and DEM 

data. The XGB-GA models using the 

different combinations of datasets had 

promising results in both four SC with 

the R2 greater than 0.57 in the testing 

phase. The XGB optimized by the GA 

with 12 optimal features in SC3 

produced the best accuracy with the 

highest R2 of 0.758 and the lowest 

RMSE of 15.40 Mg C ha−1 as well as 

reduced overfitting problems in both 
the training and the testing phases.

Scenario

(SC)
Number of Variables

R2 Training 
Set

R2 Testing 
Set

RMSE
(Mg C ha−1)

SC1
14 variables (12 MS bands of 

S2B data + 2 backscatter 
coefficients VV and VH of S1A)

0.997 0.651 21.66

SC2

27 variables (12 MS bands of 

S2B + 12 VIs + 2 backscatter 

coefficients VV & VH of S1A + 
DEM)

0.892 0.572 16.45

SC3
12 optimal variables (6 MS 

bands of S2B + 5 VIs + DEM)
0.857 0.758 15.40

SC4
32 variables (2 backscatter 

coefficients VV & VH of S1A + 
30 SAR transformations)

0.991 0.573 15.82

Among the 12 multispectral bands of S2B, the Red Edge-3 (Band 7 

at 779.7 nm), and the Red (Band 4 at 664.9 nm) were the most 

sensitive to mangrove AGC in the current study, followed by the two 

SWIR spectra (band 11 at 1610.4 nm and band 12 at 2185.7 nm). 

Interestingly, among the 12 VI indices, the Modified Chlorophyll 

Absorption in Reflectance Index (MCARI) and the Green 

Normalized Difference Vegetation Index (GNDVI) were also 

important variables for estimating mangrove AGC in the study area, 

followed by the Soil-Adjusted Vegetation Index (SAVI) and the 

Normalized Difference Index (NDI45) (bands 4 and 5 of S2B) (see 

Figure 4). The DEM data showed that mangrove AGC was sensitive 

to elevation. It is noted that the VH and VV backscatter coefficients 

of the S1A C-band and their SAR transformations were likely less 

important and were eliminated in the final optimal 12 features 
selection using the GA algorithm (Figure 4).

Mangrove AGC Models

The prediction performance of the XGB-GA model for 

estimating mangrove AGC was improved by combining the 

S2B multispectral bands, VIs, and DEM datasets. Thus, the 

hybrid XGB-GA model was employed for generating 

mangrove AGC in the study area. The final results were 

computed to a raster in GeoTiff format for visualization. The 

AGC map was interpreted (Figure 5), showing the mangrove 

AGC ranging from 2.52 to 123.89 Mg C ha−1 (average = 
57.16 Mg C ha−1).

Figure 3. Flowchart for mangrove AGC retrieval developed in the study.

Table 1. Performance comparison of ML techniques on mangrove AGC estimation (bold values highlight the best-performing 

model)

Table 2. Performance of the XGB-GA model using different numbers of 

variables (bold values highlight the best-performing model).

Satellite Image Processing and Machine Learning Approach

Figure 4. Importance variable

Figure 5. Spatial distribution of mangrove AGC at Loh Buaya
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