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1. Summary 
 
The project aimed to assess the impacts of climate change and human interventions on reservoir 
sedimentation, flood inundation, agricultural practices, and river and coastal erosion in the Vu 
Gia-Thu Bon and Cagayan River basins of Vietnam and the Philippines, respectively, to establish 
an integrated flood and sediment management schemes for sustainable development. Over the 
recent decades, dam construction and anthropogenic activities have had increasingly profound 
effects on sediment load, bathymetry, and hydrological processes. Understanding these impacts 
is critical for the foundation of sustainable hydrogeomorphology management. Hence, this 
project was designed with the ultimate goal of transferring the project results to the 
stakeholders and policy decision-makers to implement them into the national laws. This also 
involved organizing some training courses, seminars, and workshops to train the young 
researchers, stakeholders, policymakers, land local communities and expand the collaborative 
network with other ASIAN countries and global change programs. 
 
In regard to the proposed objectives, and activities planned, the project has collected all the 
required sets of data through various field visits and bathymetry surveys, and analysis has been 
performed to achieve the objectives. The results have been published in various high-impact 
factors international journals (See the list of publications for more details). Moreover, the 
project results, and research activities have been also shared, and discussed during the special 
APN/JASTIP session at the 2nd international conference on environmental sustainability and 
resource security (IC-ENSURES2022, during 08-09 March 2022), and during the special project 
closing symposium (1st international symposium on Integrated Flood and Sediment 
Management in River Basin for Sustainable Development (FSMaRT 2022), during 18-20 
December 2022, Vietnam) by APN-Project researchers and collaborators from Japan, Vietnam, 
and the Philippines side counterparts (See the Annex 1 for more details). 
 
Apart from this, the project also helped to establish an international commission (International 
Association on Climate Change Adaptation and Disaster Risk Reduction Management Inc. (IO-
CCA-DRRM)) in the Philippines for more global collaboration, and networking (see the Annex 2 
for more details).  This project has also trained stakeholders, policymakers, and local 
communities on integrated water resource management by conducting a three-day face-to-face 
collaborative stakeholder forum on Integrated Flood Risk Management in the Philippines (see 
annex 3 for more details), and many young researchers on TELEMAC numerical simulation by 
organizing comprehensive four days training workshop hosted physically and virtually by Kyoto 
University and Isabela State University for the participants from the Philippines and Japan 
respectively (see annex 4 for more details). Overall, this initiative helped publish numerous 
papers in high-impact factor journals and prestigious international conferences (annex 5.1-5.9, 
annexes 6.1-6.10, and annex 7) and will continue such collaboration through future projects 
and multilateral fund collaboration.  
 



2 

2. Objectives 
The main objectives of this proposed project are: 

1. To assess climate change/climate variability and its impacts on the rainfall-runoff and 
sediment yield in the Vu Gia-Thu Bon and Cagayan River basins. 

2. To quantify the consequences of changing climate on floods, droughts, agriculture 
activities, and river and coastal erosion; then to propose appropriate countermeasures. 

3. To evaluate reservoir sedimentation and propose suitable sediment management 
techniques focusing on Cagayan (e.g., Magat dam) river basins.  

4. To develop an integrated flood and sediment management for sustainable 
development. 

5. To foster young research for leading such innovative networks for bridging Asia and 
Pacific region partners and have a significant input for such global issues; 

6. To establish an association where the results can be transferred to the central 
government for implementation of “integrated river basin management” in the laws. 
 

3. Outputs, Outcomes and Impacts 
 

Outputs Outcomes Impacts 

Completed multiple field surveys and 
required data has been collected 
(Objective 1, 2, and 3). 

Collected data on Bathymetry, 
dam operation rules, topographic, 
soil sampling, sediment, climate, 
historical flood, and damage data 
etc. (Objectives 1, 2, and 3).  

Assessed the potential high-
risk zones for drought, and 
flood across Cagayan & VGTB 
basins, and also developed 
first time new Land Use, Soil 
maps.   
 
Published results in high-
impacts factor journal, and 
reputed international 
conferences.  

Established SWAT, TELEMAC, and RRI 
Model (Objective 1, 2, and 3). 

Hydrological modelling and data 
analysis (Objective 1, 2, and 3). 

Delivered and Installed Turbidity 
Meters (Objectives 3) 

Instruments installation, and data 
measurements techniques 
(Objectives 3) 

Real-time data measure, and 
analysis such as turbidity 
measurement, and analysis 
for water quality 
improvement, rainfall 
prediction and forecasting 
inundation areas ahead of 
any typhoon 

Developed an ensemble rainfall 
prediction, and Decision Support 
System (DSS) (Objective 3, and 4) 

Real-time Long-term rainfall 
prediction and web-based DSS for 
effective dam operation 
(Objectives 3, and 4) 

Completed Stakeholder Forum on 
Integrated Flood Risk Management 
(Objective 4) 

Face-to-face collaborative 
workshop on scaling up 
community linkages (Objective 4) 

Community involvement for 
integrated flood and 
sediment management for 
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sustainable development 

Completed onsite and online 
(physically and virtually) trainings 
(Objectives 3, 4 and 5) 

Organized training programs on 
TELEMAC 2D and 3D numerical 
simulations, and UNESCO-IHP 
(Objectives 3, 4 and 5)  

Trained young and early 
career researchers on 
integrated sediment 
management from project 
pilot countries  

Established an International 
Organization on Climate Change 
Adaptation and Disaster Risk 
Management (IO-CCA-DRRM)- 
(Objective 6) 

International organization for 
global collaboration, and 
networking (Objective 6) 

Expanded FSMaRT Network, 
and an international 
association that can bridge in 
implementing an Integrated 
River Basin Management 

Conducted International conference, 
and discussed the project results 
(Objective 4, and 5) 

Organized an international 
conference (Objective 4, and 5) 

Published and shared project 
results, networking, and well-
formed a strong international 
research group for 
continuation of research, and 
future co-project funding 
applications 

Competed the project closing 
symposium  

Reporting the final results of the 
project and closing summary  

Completed a series of bi-annual 
meetings, seminars and workshops 

Conducted a Kick-off meeting, 
project monitoring workshop, and 
project meetings  

Helped time-to-time project 
monitoring, progress 
tracking, and successfully 
project submission Successfully submitted annual and bi-

annual project reports 
Email communication, and 
submission of project reports 

Developed APN-project (FSMaRT) 
website, Social network page 

Updated website with information 
on project activities, and research 
outputs 

Shared project information 
with all the project members, 
and associated global 
networks 

 
4. Key facts/figures 
 

- Trained more than 40 young/early career researchers through four-days (25-28 
February 2022) training on TELEMAC 2D and 3D Numerical Models. 

- Signed Memorandum of Understanding (MOU) between the Japan Water Agency (JWA) 
and the City of Santiago to establish a partnership in conducting collaborative activities 
and projects to achieve water security in Santiago City and sharing knowledge on water 
issues concerning flood and sediment management of Magat Dam and Cagayan River 
Basin, during the stakeholder forum held between July 14-16, 2022, at the Mango Suites, 
Santiago City, Philippines. 
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- Established an expanded FSMaRT Network, and an International Association on Climate 
Change Adaptation and Disaster Risk Management (IO-CCA-DRRM) for global 
collaboration and the formation of a larger network of agencies worldwide.  

- Participated more than 70% young/early career researchers especially women during 
the project closing workshop (1st International Symposium on Integrated Flood and 
Sediment Management in River Basin for Sustainable Development (FSMaRT 2022)) held 
during 18th -20th December 2022 in Vietnam.   

- The Stakeholder Forum on Integrated Flood Risk Management, held from 14 to 16 July 
2022, was designed to train the stakeholders and enhance the capacities of 
policymakers, managers, and practitioners of river basin organizations on flood 
management through knowledge sharing, techniques, methodologies, and good 
practices to help achieve the effective implementation of integrated flood risk 
management. 

- Project results on almost 10 different research topics were published and shared during 
the 2nd international conference on environmental sustainability and resource security 
(IC-ENSURES2022), held virtually from 08 to 09 March 2022.  

- Assessed and supported young early career researchers from a new member country 
(Universiti Teknologi Malaysia, UTM Malaysia) for expanding the APN network and 
multilateral collaboration over the course of this two-year project.  

- One super computer system for project data modeling and simulation has been 
purchased and transferred to the University of Danang (DU), Vietnam.  

- Two turbidity meters have been delivered, and two turbidity measurement stations 
have been installed in the Cagayan River basin, Philippines. 

- Throughout the project period, three bathymetry and field data surveys and one post-
flood survey were conducted.  

- A web-based ensemble rainfall prediction, and decision support system (DSS) has been 
developed for effective dam operation, and to support rainfall prediction over Cagayan 
River Basin, Philippines.  

- Published nine numbers of journal articles and more than 20 numbers of conference 
proceedings articles.  

 
5. Publications  

1. Binh Quang Nguyen, Sameh Kantoush, Doan Van Binh, Mohamed Saber, Duong Ngoc Vo 
& Tetsuya Sumi (2023): Understanding the anthropogenic development impacts on 
long-term flow regimes in a tropical river basin, Central Vietnam, Hydrological Sciences 
Journal, DOI: 10.1080/02626667.2022.2153298 

2. Binh Quang Nguyen, Sameh Kantoush, Mohamed Saber, Doan Van Binh, Duong Ngoc Vo 
& Tetsuya Sumi (2023): Quantifying the impacts of hydraulic infrastructures and 
contributions of the sub-basins on streamflow in a tropical river basin, Vietnam, Journal 
of Hydrological Processes.  

3. Mohamed Saber, Tayeb Boulmaiz, Mawloud Guermoui, Karim I. Abdrabo, Sameh A. 
Kantoush, Tetsuya Sumi, Hamouda Boutaghane, Tomoharu Hori, Doan Van Binh, Binh 
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Quang Nguyen, Thao TP Bui, Ngoc Duong Vo, Emad Habib & Emad Mabrouk (2023): 
Machine learning techniques and 2D rainfall-runoff inundation model for flood 
susceptibility and extent mapping, Journal of geomatics natural hazards and risk (Under 
Review) 

4. Thanh, H. V., Binh, D. V., Kantoush, S. A., Nourani, V., Saber, M., Lee, K.-K., & Sumi, T. 
(2022). Reconstructing daily discharge in a megadelta using machine learning 
techniques. Water Resources Research, 58, e2021WR031048.  
https:// doi.org/10.1029/2021WR031048 

5. Doan Van Binh, Sameh A. Kantoush, Riadh Ata, Pablo Tassi, Tam V. Nguyen, J´er´emy 
Lepesqueur, Kamal El Kadi Abderrezzak, S´ebastien E. Bourban, Quoc Hung Nguyen, 
Doan Nguyen Luyen Phuong, La Vinh Trung, Dang An Tran, Thanh Letrung, Tetsuya Sumi 
(2022): Hydrodynamics, sediment transport, and morphodynamics in the Vietnamese 
Mekong Delta: Field study and numerical modelling, Geomorphology, 
https://doi.org/10.1016/j.geomorph.2022.108368 

6. Mata, C.B., Balderama, O.F., Alejo, L.A., Bareng, JL.R., Kantoush, S.A. (2022). Satellite-
based flood inundation and damage assessment. J Robot Auto Res, 3(2), 209-219. 
doi:10.33140/jrar.03.02.12 

7. Singson, C.L., Alejo, L.A., Balderama, O.F., Bareng, J.L., Kantoush, S.A. (2023) Modelling 
Climate Change Impact On The Inflow Of Magat Reservoir Using The Soil And Water 
Assessment Tool (Swat) Model For Dam Management (2023). Journal of Water and 
Climate Change.  

8. Felipe, A.J., Alejo, L.A., Balderama, O.F., Rosete, E.A. (2023) Climate change intensifies 
the drought vulnerability of river basins. Journal of Water and Climate Change. (Under 
Review) 

9. Alejandro, A.S., Alejo, L.A., Balderama, O.F., Bareng, J.L., Kantoush, S.A. (2023).  
Forecasting dam inflow and flood inundations under extreme rainfall events using the 
rainfall-runoff-inundation model. Modeling Earth Systems and Environment. (Under 
Review) 

 

6. Media reports, videos, and other digital content 
1. APN-Project (FSMaRT) Website updated with project information, and key research 

activities (https://www.ifsm-ku.com/) 
2. 1st international symposium on Integrated Flood and Sediment Management in River 

Basin for Sustainable Development (FSMaRT) 2022 (https://fsmart.dut.udn.vn/) 
3. Video contents of 1st international symposium on Integrated Flood and Sediment 

Management in River Basin for Sustainable Development (FSMaRT) 2022 
(https://www.youtube.com/watch?v=mM7_Bc9W6uA) 

4. The 2nd international conference on environmental sustainability and resource security 
(IC-ENSURES2022, during 08-09 March 2022, available at, 
https://www.utm.my/ipasa/icensures2022/) 

https://www.ifsm-ku.com/
https://fsmart.dut.udn.vn/
https://www.youtube.com/watch?v=mM7_Bc9W6uA
https://www.utm.my/ipasa/icensures2022/
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5. Social networking site for activity reporting, and publications developed by project 
collaborator (Isabela State University (ISU), Philippines), 
https://www.facebook.com/APN.ISU.IFWARM 

 
7. Pull quotes 
The APN FSMaRT project paved the way for a new paradigm shift in Asian river basins for 
integrated flood and sediment management by developing new monitoring techniques and 
generating accurate measurements that allow us to propose a suitable countermeasure. 
Furthermore, the APN-FSMaRT project plays a significant role in the multilateral collaboration 
between Japan, Vietnam, and the Philippines, with the addition of Malaysia as a new member, 
and it provides a future direction for young researchers and local/national governments to 
implement. The project was a driving force in raising funds for the APN project and establishing 
our network. 
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Annex 5.4: Journal Article published in Journal of Water Resources Research 
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Annex 5.9: Journal article submitted to the Journal of Water and Climate Change. (Under 
Review) 
 
Annex 6.1: Agenda_IC ENSURES 2022 International Conference (APN_Special Session) 
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Annex 6.5: Abstract_APN_Project_KANTOUSH et al (ICENSURE-2022) 
Annex 6.6: Abstract_Binh_APN-Project (ICENSURE-2022) 
Annex 6.7: Abstract_Thao Bui_APN-Project (IC-ENSURES 2022) 
Annex 6.8: Full Paper_Duy Luu_APN-Project (IC-ENSURES 2022) 
Annex 6.9: Abstract_Mai Thi Thuy Duong (IC-ENSURES 2022) 
Annex 6.10: Abstract_Truong_APN-Project (IC-ENSURES 2022) 
 
Annex 7: Abstracts Book, and detailed agenda_1st FSMaRT2022 



Annex 1: International Conferences, and Symposiums

The 2nd international conference on environmental sustainability and resource security

(IC-ENSURES2022- 08-09 March 2022).

This conference aims to create an international platform to exchange views, learn best practices, and

sharing knowledge between professionals and academicians on environmental sustainability and

resource security (IC-ENSURES2022) related to the environment and water security, which also

includes disaster related topics.

1st International symposium on Integrated Flood and Sediment Management in River Basin for

Sustainable Development (FSMaRT 2022)).



The 1st international symposium on Integrated Flood and Sediment Management in River Basin for

SusTainable Development (FSMaRT) 2022 was held in Da Nang, Vietnam on 18th – 20th December

2022. This conference was aims to provide a forum for researchers, scientists, engineers and scholars

from industry, academia and government to share their experience, amazing ideas and innovative

research in the impacts of climate change and human interventions on reservoir sedimentation,

flood inundation, agricultural practices, and river and coastal erosion. In addition, this conference

was also be a platform to discuss practical issues, challenges encountered as well as the solutions

adopted.

This conference was attended by around 70% younger (Students/Early Career Researchers among

the more than 100 total participants (Figure 1), belongs from 37 different institutes (Table 1) in 13

different countries (Figure 2).

Figure 1: Participants by category

Table 1: Name of the Institutes participated in 1st FSMaRt2022, Vietnam.



Figure 2: Number of participants by countries in 1st FSMaRT 2022, Vietnam.



Group Photos of participants in 1st FSMaRT 2022, Vietnam



Photos of Key Presenters, and conference activities during 1st FSMaRT2022, Vietnam.



Annex 2: IO-CCA-DRRM Inauguration

The Isabela State University (ISU), Philippines, along with its partner agencies, took the lead in the

inauguration of the International Organization on Climate Change Adaptation and Disaster Risk

Management (IO-CCA-DRRM) Inc. Office on July 16, 2022 at 8:00 AM. To mark its official opening, the

grand inauguration of the office, through a ceremonial ribbon cutting, was spearheaded by Dr.

Aquino, Prof. Tetsuya Sumi, an academician from KU and Chairman of JASTIP; and Vice Mayor

Tupong.

All the dignitaries from the

Japan Water Agency (JWA),

Japan-ASEAN Science,

Technology and Innovation

Platform (JASTIP), Kyoto

University (KU), Department

of Science and Technology -

Philippine Council for

Industry, Energy, and

Emerging Technology

Research and Development

(DOST-PCIEERD), Asia-Pacific

Network (APN) for Global

Change Research, and top

campus officials of

ISU-Echague were the part of

the inauguration of IO-CCA-DRRM.



Dr. Ricmar P. Aquino simultaneously serves as the President of ISU and IO-CCA-DRRM and is one of

the Board of Trustees and incorporators of the said international organization.

As the activity advances, Dr. Joe G. Lagarteja, Data Protection Officer, launched the website of

IO-CCA-DRRM. Primarily, this website was developed for the wider dissemination of the University’s

internationalization efforts and ventures. Dr. Lagarteja also presented all the features and contents of



the website to facilitate information searching and navigation around the control system of the

website.



Annex 3: Stakeholder Forum on Integrated Flood Risk Management, 14-16 July

2022, Philippines

The Stakeholders Forum on Integrated Flood Risk Management in Cagayan River Basin was

commenced on July 14, 2022, at Zen Hotel, Santiago City. Numerous dignitaries from the Japan

Water Agency (JWA), Japan-ASEAN Science, Technology and Innovation Platform (JASTIP), Isabela

State University, Kyoto University- Disaster Prevention Research Institute (DPRI), Department of

Science and Technology - Philippine Council

for Industry, Energy, and Emerging

Technology Research and Development

(DOST-PCIEERD), Asia-Pacific Network

(APN) for Global Change Research, and

Water Research and Development Center,

Department of Environment and Natural

Resources (DENR) Region 2, National

Irrigation Administration- Magat River

Integrated Irrigation System (NIA-MARIIS),

and Local Government Units (LGUs) of

Santiago City and Isabela as well as

top-level political leaders of the Province of

Isabela served as resource speakers during its kickoff on July 14, 2022.





Prof. Tetsuya Sumi, an academician from Kyoto University and notable at JASTIP, accentuated various

work plans for Japan-Philippines collaboration in the Cagayan River Basin. He highlighted several

projects for 2020-2025, the challenges on dams in the 21st century, dam asset transfer to the next

generation, Japan’s situation of dam’s flood control, pre-release operation practices, and the target

basins and research groups. He even emphasized, “Japan will proactively contribute to the solution

of water-related social issues faced by the Asia-Pacific region by developing “quality infrastructure”

capitalizing on Japan’s advanced technologies…and public-private partnerships, and fostering



digitization and innovation to solve social issues as a growth engine for sustainable development and

the formation of a resilient society and economy.

Prof. Sameh Ahmed Kantoush, Leader of Asia-Pacific Network for Global Change Research Project,

elucidated the topic “Flood Mitigation and Risk Communication under Successive Typhoons at

Cagayan River Basin in the Philippines (DPRI International Collaborative Research Project).” Likewise,

he expounded flood control dams’ scenarios as well as integrated approach for risk communication

and reduction as a way forward.

To update the stakeholders regarding the case of the Philippines, Dr. Lanie A. Alejo, Director of Water

Research and Development Center, ISU, expounded the topic “Integrated Flood and Water Resources

Management Research and Development in the Cagayan River Basin.” She presented the CRB

baseline information, various water management sectors, water-related disasters in the basin, and



numerous schematic frameworks for integrated flood, sediment, and water resources management,

as well as the research projects’ accomplishments.

To expand the international ventures of the stakeholders, a ceremonial MOU signing between the

Japan Water Agency and Cagayan River Basin Management Council has been conducted to seal the

forged partnership.





Annex:4 Trainings and Capacity building programs

1. Training Workshop on “Flow and Sediment Transport Modelling in River Basins using TELEMAC

2D and 3D Numerical, 25-28 February 2022

A four-day online training course on “Flow and Sediment Transport Modelling in River Basins

using TELEMAC 2D and 3D Numerical Codes” is being organized by Isabela State University

in collaboration with Kyoto University under a capacity building programme for their

working early career scientist/engineers/students from different regional centers and

university from Japan and Philippines, supported by Asia Pacific Network (APN).

This four-day training workshop provides an overview of the capabilities, limitations, and

challenges in hydraulic modelling of flow and sediment transport in rivers. This course covers

a broad range of modelling techniques for fluvial processes using the TELEMAC suite of

computer models. Lectures provided both theoretical background and practical aspects of

modelling flow and sediment transport processes, with hands on application using data sets

acquired on real rivers.

This course was attended by more than 40 participants from collaborative institutes (viz.

Kyoto University, Isabela State University, IFWaRM, Cagayan State University, Department of

Science and Technology, National Irrigation Administration), from Japan and the Philippines.



2. Online Training Program – UNESCO-IHP at DPRI, Kyoto University

In December 2020, UNESCO-IHP Training was organized to train the project team from

Philippines and Vietnam on climate change data analysis and hydrological modelling

integrating with various types of satellite data information.



3. UNESCO-ISI Online Training Workshop on Sediment Transport Measurement and Monitoring

The UNESCO-ISI Online Training Workshop on Sediment Transport Measurement and
Monitoring took place on July 5-9, 2021, focuses on "Water security: responses to local,
regional, and global challenges," and addresses the wide-ranging environmental, social, and
economic effects of erosion, sediment transport, and sedimentation processes. This
addressed the following topics:

1. Standard measurement and monitoring techniques used to collect data on water
discharge and sediment loads for rivers and reservoirs.

2. Recent advances in sediment transport measurement and monitoring: online
monitoring of suspended sediment concentrations in rivers.

3. Sediment measurement and monitoring methods for mountain streams.

4. Measuring erosion and sediment yields on slopes and in small catchments for soil
and water conservation; and

5. Application of sediment data in controlling sediment-related ecological problems.
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ABSTRACT
The Vu Gia Thu Bon (VGTB) basin constitutes the primary water supply in Central Vietnam. While climate 
change disturbs stream discharges and affects flood extremes, upstream dam development may intensify 
or mitigate such impacts. Therefore, this study provides a quantitative evaluation of long-term alterations 
in the flow regimes of the VGTB rivers from 1977 to 2020 resulting from the impacts of upstream 
anthropogenic developments. The datasets are divided into two periods, pre-2000 (1977–2000) and 
post-2000 (2001–2020), using different indices and analytical methods. The analyses show that since 
2011, reservoir operations have reduced the maximum and high-flow discharges downstream in excess 
of climate change and land-use effects. However, due to the impact of water transfer by the Dak Mi 4 
hydropower dam from the Vu Gia River to the Thu Bon River through a diversion channel, the minimum 
and low-flow discharges decreased in the pre-dam period and increased in the post-dam period.
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1 Introduction

Typhoons are a severe natural hazard that affects river basins 
worldwide. Stronger typhoons usually produce heavy rainfalls, 
enormous wind speeds, higher waves, and storm surges 
(Larson et al. 2014). The consequences of typhoons include 
damage to infrastructure, agricultural production and river
banks; coastal erosion; and the loss of human life. The Vu Gia 
Thu Bon (VGTB) basin (Fig. 1(a)) is located in the central 
coastal region of Vietnam, which is prone to a tropical mon
soon climate (RETA 2011, Ribbe et al. 2017). According to the 
Japan Meteorological Agency (JMA), the area is frequently 
affected by typhoons and tropical depressions. In Vietnam, 
the majority of typhoons (70%) occur in the central parts of 
the country (Fig. 1(b)), according to the Vietnam General 
Department of Meteorology and Hydrology. Typhoons, tropi
cal depressions, and cold air have caused heavy rain, leading to 
severe flooding. Wang et al. (2014)’s key findings indicate that 
increased rainfall in Central Vietnam since the beginning of 
the 20th century is associated with increased typhoons. Indeed, 
it has been revealed that there is a strong correlation between 
the increasing trend of stronger typhoons and the extension of 
the typhoon season over the last decade. Consistently, the 
maximum rainfall has been found to increase, along with the 
higher frequency of typhoons on the south coast of Vietnam 
(Tan and Thanh 2013). In 2020, four typhoons (i.e. Noul, 
Linfa, Molave, and Vam Co) affected the VGTB river basin, 
three of which had magnitudes higher than the long-term 
average (Fig. 1(d)). Due to the impacts of typhoons, the flood 
peak at the Ai Nghia and Giao Thuy hydrological stations 
recorded in the downstream basin reached 12.84 m and 

8.97 m, respectively, higher than those in 1999 (Fig. 1(a)). 
According to the report of the Commanding Committee for 
Disaster Prevention and Search and Rescue in Quang Nam 
Province, as a consequence of typhoons in 2020, 28 people 
died, 19 people were reported missing, and 200 people were 
injured, and the typhoons resulted in total economic losses of 
approximately $460 million. The increase in the frequency 
(Fig. 1(d)) and intensity of typhoons may be a result of climate 
change.

The VGTB basin ranks fourth in terms of hydropower 
potential in Vietnam (ICEM 2008); many hydropower 
plants have been built and are operating in the region. 
Although hydropower is essential for the country, it has 
significant adverse effects on river systems, such as flow 
regime alterations, sediment reduction, flooding, drought, 
water shortages, agricultural production decreases, and sal
ine intrusion intensification (Dinh 2016, Laux et al. 2017, 
Ribbe et al. 2017, Firoz et al. 2018). The Vu Gia River is 
the primary source of water for Da Nang city and regional 
agricultural activities. A large volume of water was diverted 
from the Vu Gia River to the Thu Bon River (Fig. 1(a)) 
when the Dak Mi 4 hydropower plant began operation in 
2011. This water diversion led to deficits in the water 
supply for agriculture and drinking water and increases in 
salinity intrusion in Da Nang city. Consequently, a polemic 
controversy between Da Nang city and Quang Nam 
Province (Fig. 1(a)) regarding the impact of hydropower 
development has begun. Da Nang city blames Quang Nam 
Province for a large-scale hydropower cascading system 
that negatively affects downstream water resources in the 
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dry season (Nauditt et al. 2017). Therefore, quantification 
of the cascading effects of hydropower dams developed in 
Quang Nam Province and in the entire VGTB basin on the 
flow regimes in Da Nang city is urgently needed to ease 
this conflict.

A complex series of impounding reservoirs in the VGTB 
basin have been built (18 reservoirs) or planned (42 reservoirs) 
to make the best use of elevation differences and maximize the 
power generated through water diversion without compensat
ing for reductions in the water level and environmental flow. 

Figure 1. (a) Map of the VGTB River basin, (b) trajectories of typhoons affecting the basin, (c) frequency of typhoons by month, and (d) number of typhoons by year 
(Source: National Institute of Informatics, Japan. http://agora.ex.nii.ac.jp/) (Japan Meteorological Agency 2013).
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The distribution of these dams is heavily concentrated on 
the Vu Gia River, with 12 small and large reservoirs, of 
which two diversion channels divert water to the Thu 
Bon River. Firoz et al. (2018) highlighted the impacts of 
eight upstream dams (six in the Vu Gia and two in the 
Thu Bon) over a short operational period in 2013 on 
drought risk and streamflow. That study concluded that 
the Vu Gia River has a high risk of hydrological drought, 
which impacts the water supplied for irrigation and 
drinking water in Danang city, especially in the dry 
season. In the rainy season, these eight dams reduced 
the monthly average discharge by 30% (Firoz et al.  
2018). In contrast, the monthly average flow discharge 
increased in the Thu Bon River from 24 m3/s to 62 m3/s 
in the dry period (Firoz et al. 2018). Additionally, pre
vious studies analysed the impacts of a limited number of 
dams following operation periods of two years or more. 
However, the cumulative effects of these 18 dams, plus 
additional dams built over an extended period ending in 
2020, on flow regime alterations due to a changing cli
mate remain unknown and constitute the root of this 
research.

Nauditt et al. (2017) examined the individual impact of a 
hydropower reservoir with a diversion channel from the drier 
Vu Gia River to the wetter Thu Bon River from 1980 to 2013. 
These diversion processes reduced the mean monthly dis
charge in Vu Gia by 13–125 m3/s. An additional individual 
assessment of the Song Tranh 2 reservoir in the Thu Bon River 
was performed to evaluate the changes in the released flow 
based on daily measurement data from 1996 to 2018 (Ha and 
Coynelb 2019). The study revealed that the average flow after 
the Song Tranh 2 reservoir opened decreased by 103 m3/s, 
from 864 m3/s to 761 m3/s. Phuong et al. (2020) used the 
classical/modified Mann-Kendall and innovative-Sen methods 
to evaluate the trend of hydrometeorological factors in the 
VGTB basin over 36 years, from 1979 to 2014. The authors 
used a continuous data series from 1979 to 2014 to assess the 
general trend, which did not accurately reflect the flow char
acteristics within a reservoir. The authors used only the classi
cal/modified Mann-Kendall and innovative-Sen methods, 
which do not reflect all the flow regime behaviours of the 
basin. These studies are limited in that they do not consider 
the effects of all reservoirs and long-term flow alterations at all 
stations. The study period is relatively short, and flow indica
tors have not thoroughly evaluated the flow regime alterations. 
Therefore, in the present study, we attempt to assess flow 
regime alterations based on a more extended period (1977– 
2020) and consider all dams and flow transfer impacts.

Understanding the long-term changes in the flow regime 
in the VGTB basin is of vital importance for sustainable 
management and water resource distribution in the coming 
decades. However, the previous studies are limited in terms 
of data range (up to 2014) and thus do not assess the cascad
ing effects of all dams (many of which were built more 
recently) on the flow regime alterations in the VGTB basin. 
Accordingly, this study aims to quantify changes in the long- 
term flow regimes in the VGTB basin due to climate change, 
reservoir cascading, and construction of water diversion 
structures. The contributions of this paper are (1) a 

comprehensive evaluation of the long-term flow regime 
alterations considering a comprehensive range of hydrologi
cal alteration indicators and (2) an understanding of the 
impacts of reservoir operations, climate change/variability, 
and land-use change on the flow regimes. The results of our 
research provide evidence-based data regarding historical 
changes in the hydrology of the VGTB basin, providing 
stakeholders with helpful information for river basin man
agement and solutions for informing future preparedness and 
sustainable development.

2 Materials and methodology

2.1 Study area

The VGTB river basin (Fig. 1(a)) is the major basin in the 
Central Coast region, Vietnam, with an area of 10 350 km2. 
The basin has a tropical monsoon climate and two distinct 
seasons: dry summer (January–August) and heavy rain 
(September–December). The average annual rainfall varies 
significantly, from 2000 mm in the central and downstream 
regions to more than 4000 mm in the southern mountai
nous areas. There are seasonal differences, with 65% to 
80% of the annual rainfall concentrated from September 
to December (RETA 2011). In the eight months of the dry 
season, rain accounts for only 20% to 35% of the annual 
rainfall (Nauditt et al. 2017). The driest period usually falls 
between February and April, with approximately 3% to 5% 
of the total annual rainfall.

The discharge of the basin is divided into three different 
seasons: low flow (January–April), transition flow (May– 
August), and high flow (September–December). Due to the 
difference in the rainfall distribution, the runoff in the VGTB 
basin varies significantly between seasons. The flow in the 
rainy period accounts for approximately 62.5% to 69.2% of 
the total annual flow. Every year, the basin is frequently hit by 
four to eight floods. The flood peaks usually occur in October 
and November due to different weather patterns, such as 
typhoons, tropical depressions, cold air, and northeast mon
soons (Fig. 1(c)) (T. T. Vu et al. 2011). The frequency of 
cyclones ranges from one to two per year (Fig. 1(d)).

Figure 1(a) shows 18 existing dams and diversion facil
ities and the river gauging stations considered in this 
study. There are six reservoirs on the Thu Bon River, 
with a total storage volume of 1575 million m3 (Fig. 2 
(a)). There are 12 reservoirs in the Vu Gia basin, with a 
total storage volume of 1335 million m3 (Fig. 2(b)). Eight 
hydropower plants affect the flow at the Thanh My and 
Nong Son stations: Dak Mi 2, Dak Mi 3, Dak Mi 4, Dak 
Mi 4B, and Dak Mi 4C in the Vu Gia basin and Song 
Tranh 2, Song Tranh 3, and Song Tranh 4 in the Thu Bon 
basin (Fig. 1(a)). The Dak Mi 4 plant in the Vu Gia basin 
was constructed in 2007 and began operation in 2011. A 
tunnel was built in the Dak Mi 4 hydropower plant to 
divert water and sediment from the Vu Gia River to the 
Thu Bon River (Fig. 1(a)). This diversion led to a signifi
cant alteration of the basin’s flow regime which is attrib
uted to hydrological, drought and saline intrusion during 
the dry season in Da Nang city (Firoz et al. 2018).
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2.2 Data collection

In this study, rainfall data from 15 raingauges were collected 
from the Mid-Central Regional Hydro-Meteorological Center 
(Fig. 1(a)). Because of the sparse distribution of raingauges (15 
gauges) in the basin, we interpolated the rainfall data from 
those stations to make a spatial map using the kriging method 
in ArcGIS 10.4 following the method of Duong and 
Gourbesville (2014). The discharge and water level data at 
the Thanh My and Nong Son stations (the only two stations 
monitoring discharges in the basin) were collected from 1977 
to 2020, and the dataset was treated for gaps and missing data 
(Fig. 3). Data on the operation of the hydropower plants were 
obtained from the Natural Disaster Prevention and Control 
Department of Quang Nam Province (NDPAC). Hydraulic 
infrastructure data were also obtained, from Decision 1865/ 
QD-TTg: Procedures for Operating Reservoir Systems in the 
VGTB River Basin (Government of Vietnam 2019). Land use 
in 2001, 2005, 2010, and 2020 was collected from the project 
“Land Use and Climate Change Interaction in Central 
Vietnam (LUCCi)” (www.lucci-vietnam.info) to assess the 
effect of land-use changes on runoff.

2.3 Methodologies

The flow regime is analysed based on the following methods: 
statistical trend tests (Mann-Kendall, Sen’s slope), indicators of 
hydrologic alteration (IHA), the index of hydrological regime 

alteration (FQ), and flow regime metrics. The flood character
istic indices are analysed as a peak over threshold (POT) using 
the generalized Pareto distribution (GPD). We want to inves
tigate the cumulative impacts of all dams after construction 
from 2001 to 2020 and prior to construction from 1977 to 2000 
to be considered as climate change impacts. Therefore, the 
research is divided into two periods: pre-2000 (1977–2000) 
and post-2000 (2001–2020).

2.3.1 Statistical trend tests
The nonparametric Mann-Kendall test and the slope method 
of Sen are used to evaluate the long-term discharge and rainfall 
changes. The nonparametric Mann-Kendall test is commonly 
employed to detect monotonic trends (increasing or decreas
ing) in data collected over time. The Mann-Kendall test is used 
to determine the tendency of long-term data (Kendall 1938, 
Mann 1945), and the rate of change is estimated using the 
slope method of Sen (Sen 1968).

2.3.2 Indicators of hydrologic alteration (IHA)
IHA is a software program developed by scientists at the 
Nature Conservancy (Richter et al. 1996, 1998, 2003). IHA 
provides valuable information for those trying to understand 
the hydrological impacts of human activities and develop 
environmental flow recommendations for water managers. 
IHA analysis can help statistically describe how patterns have 
changed for a particular river or lake due to abrupt impacts 
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Figure 2. Total storage of hydropower dams in the (a) Vu Gia basin and (b) Thu Bon basin (ICEM 2008, MOIT 2015).

Figure 3. Daily discharge and rainfall at the (a) Thanh My station and (b) Nong Son station. The black line is the discharge, and the blue (shaded) line is the rainfall.
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such as dam construction or land and water use changes 
(Opperman 2006). This method includes 32 hydrological indi
cators, which are categorized into three large groups: (1) mag
nitude, (2) timing, and (3) duration and frequency (Table 1).

2.3.3 Index of hydrological regime alteration (FQ)
The FQ, adopted from Alcayaga et al., evaluates changes in the 
frequency and duration of high flow and low flow.  

FQ %ð Þ ¼
NQpost

NQpre
� 100 � 100 (1) 

where FQ %ð Þ indicates the frequency of change, and NQpre 
and NQpost are the number of days when the flow is higher than 
the high flow or lower than the low flow in the pre-2000 and 
post-2000 periods, respectively.

2.3.4 Impact assessment of the flow regime metrics
Reservoir operation depends mainly on operational objectives 
and hydrometeorological conditions and can lead to changes 
in flow regimes (Zhang et al. 2018). To see changes over the 
long term, flow metrics (magnitude, variability and frequency, 
duration, timing, and rate of change) are used (Zhang et al.  
2018, Van Binh et al. 2020). Twenty-three indicators in flow 
mode metrics over different years are used to evaluate the 
effects of reservoirs, including relative and absolute values 
(Table 1). The equation for calculating these values is adopted 
from Zhang et al. (2018) and Van Binh et al. (2020). 

ADi ¼ Vi
post �

�Vi
pre (2) 

RDi ¼
ADi

�Vi
pre
� 100% (3) 

�Vi
pre ¼

PN
1 Vi

pre

N
(4) 

where AD and RD are the absolute and relative deviations 
of the ith metric, respectively; Vi

post and Vi
pre are the values 

of the ith metric in the post-2000 and pre-2000 periods, 
respectively; �Vi

pre is the mean value of the ith metric in the 
pre-2000 period; and N is the number of years in the pre- 
2000 period. If the deviation is greater than 0, the flow 
regime metrics are positively impacted. If it is less than 0, 

then the flow regime metrics are negatively impacted. 
When it is equal to 0, the flow regime metrics have no 
impacts. The relative difference is divided into five grades 
based on the percentiles adopted by Zhang et al. (2018): 
slight (−15% ≤ RD < −5% or 5% < RD ≤ 15%), moderate 
(30% ≤ RD < −15% or 15% < RD ≤ 30%), high (−45% ≤ 
RD < −30% or 30% < RD ≤ 45%), extreme (RD < −45% or 
45% < RD), and no impact (−5% ≤ RD ≤ 5%).

2.3.5 Peak over threshold (POT) method
The POT method is used to analyse the flood frequency for the 
Vu Gia and Thu Bon basins. The POTs are the flood peaks that 
are more significant than a given threshold in each year. POT 
modelling provides additional flexibility and a more compre
hensive description of peak floods (Lang et al. 1999).

The POT method depends on two factors: independent 
criteria and threshold selection. Therefore, how the threshold 
is selected is important. The first step is the consideration of 
the independence conditions, and the second step is the 
threshold selection. The distribution of the POT series can be 
determined by the GPD proposed by Pickands (1975).

3 Results

3.1 Alterations of the flow regime in the dry season

For the flow magnitude, the low-flow discharge of the Vu 
Gia (one-day minimum, Q90, May–August) was mainly 
positively impacted at slight to extreme grades from 2001 
to 2011 and negatively affected at severe rates from 2012 
to 2020 (Fig. 4(a)). The low-flow discharge of the Thu 
Bon was positively and negatively impacted to a signifi
cant degree before becoming positively impacted from 
2012, except for 2020, in which it was negatively impacted 
(Fig. 4(b)). The annual impact variation in the dry season 
increased slightly in the Vu Gia but increased consider
ably in the Thu Bon in the post-2000 period (Fig. 5, Table 
2). The increased rates of minimum and low-flow dis
charges were 1–21% for Thanh My and 20–57% for 
Nong Son.

For the flow variability and frequency, the impacts of 
the flow metrics were negative to positive in the Vu Gia 
starting in 2011 (Fig. 4(a)). The most impacted areas in the 
Thu Bon showed extremely negative grades (Fig. 4(b)). The 
duration of the low-flow season in the post-2000 period 

Table 1. Flow regime metrics used in the impact assessment of long-term alterations in the VGTB basin.

Group Regime characteristic Hydrologic metric Units

Magnitude Average flow Mean daily discharge of a year m3/s
Mean daily discharge in each month during the low-flow period m3/s
Mean daily discharge in each month during the transition-flow period m3/s
Mean daily discharge in each month during the high-flow period m3/s
Discharges in the 40th and 60th percentiles of the FDC: Q40 and Q60 m3/s

High flow Annual one-day maximum discharge m3/s
Extreme high-flow discharge Q10 (10th percentile of the FDC) m3/s

Low flow Annual one-day minimum discharge m3/s
Extreme low-flow discharge Q90 (90th percentile of the FDC) m3/s

Timing High flow Julian date of the one-day maximum discharge day
Low flow Julian date of the one-day minimum discharge day

Duration and frequency High flow Index of hydrological regime alteration in high flow: FQ-high flow %
Low flow Index of hydrological regime alteration in low flow: FQ-low flow %
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Figure 4. Heatmap quantifying the alteration of the flow regime metrics in the Vu Gia and Thu Bon basins. Blue indicates a positive impact, and red indicates a negative 
impact.
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Figure 5. Differences in the discharge hydrographs between the two periods in the transition-flow, low-flow, and high-flow seasons in (a) the Vu Gia basin and (b) the 
Thu Bon basin. The blue line is the discharge in the pre-2000 period, and the red line is the discharge in the post-2000 period.
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increased by 25% in the Vu Gia and decreased by 60% in 
the Thu Bon (Table 2).

For the flow timing, the Julian date of the minimum dis
charge was delayed from 172 to 191 days (19 days) in the post- 
2000 period in the Vu Gia. The appearance of the minimum 
release in the Thu Bon occurred six days earlier, from 225 to 
219 days (Table 2).

There was a distinguishable deviation in the annual 
impact variations in the basins in the dry season. The 
low-flow discharge began changing in approximately 2011; 
the change became obvious in 2012. The red colour 
(extreme negative) extended from 2012 to 2020 for the 
Vu Gia. In contrast, the blue colour (extreme positive) 
was common from 2012 to 2019 for the Thu Bon. These 
changes were consistent with the operating years of the 
Dak Mi 4 dam in the Vu Gia basin and the Song Tranh 
2 dam in the Thu Bon basin. In contrast, the regulation of 
Dak Mi 4 decreased the mean daily inflow annually in the 
Vu Gia. As a result, the regulation of the dam increased the 
expected flow variability and low-flow frequency.

3.2 Alterations of the flow regime in the rainy season

The results from the POT method (Fig. 6 (a) and (b)) served as 
a guideline for analysing the flood frequency and identifying 
peak floods. The thresholds from the POT method for the Vu 
Gia and Thu Bon basins were 850 and 2400 m3/s, respectively. 
This method allowed us to characterize the statistical distribu
tion of shorter record lengths post- and pre-dam. In the Vu 
Gia, based on the Mann-Kendall test, the discharge increased 
statistically from 1977 to 2000 and decreased statistically from 

2001 to 2020. In the Thu Bon, the trends in the two periods 
increased. In contrast to Firoz et al. (2018), we found that the 
longer period had a statistically significant frequency. Figure 7 
illustrates the results of the flood frequency distribution for the 
Vu Gia and Thu Bon basins based on the GPD. The frequency 
of flood flows in the post-2000 period was smaller than that in 
the pre-2000 period in the Vu Gia (Fig. 7(a)). Water received 
from the Vu Gia combined with reservoir operations led to a 
higher flood frequency in the Thu Bon (Fig. 7(b)).

Due to anthropogenic intervention in the post-2000 per
iod, the maximum discharges in the Vu Gia decreased by 
6%, and those from the Thu Bon increased by 21% (Table 2). 
The magnitude of the high-flow discharges (one-day max
imum, Q10, September–December) in the Vu Gia were 
positively impacted from 2001 to 2011 before becoming 
negatively impacted with small to severe rates from 2012 
to 2020 (Fig. 4(a)). For the Bon, high-flow discharges were 
positively and negatively impacted and clearly negatively 
impacted in 2019 (Fig. 4(b)). The high-flow discharge in 
both basins increased during the four months of the rainy 
season, except for November in the Thu Bon. The largest 
increases in the Vu Gia and Nong Son were 44% and 57%, 
respectively.

The high-flow frequency (FQ-high flow) in the Vu Gia 
changed from a positive to a negative impact grade starting in 
2011, whereas it was mostly a positive grade in the Thu Bon (Fig. 4 
(a) and (b)). The duration of the high-flow discharge decreased in 
the Vu Gia by 33% and did not change in the Thu Bon.

For the flow timing, the patterns of discharge hydrographs 
in the Vu Gia and Thu Bon were also altered (Fig. 5 (a) and 
((b)): the peak discharge occurred 10 and 11 days later in the 

Table 2. Results of the IHA analysis to determine discharge alterations at the Thanh My and Nong Son stations.

Indicator Units

Thanh My station Nong Son station

Pre-2000 Post-2000 Deviation magnitude (%) Pre-2000 Post-2000 Deviation magnitude (%)

January m3/s 92 100 8 (9) 194 234 40 (20)
February m3/s 59 59 1 (1) 116 148 32 (27)
March m3/s 43 47 4 (9) 76 119 43 (57)
April m3/s 34 38 5 (13) 59 91 32 (53)
May m3/s 40 41 2 (4) 80 130 50 (62)
June m3/s 38 41 3 (7) 76 97 21 (27)
July m3/s 39 40 1 (2) 61 72 11 (19)
August m3/s 39 42 3 (7) 56 96 40 (72)
September m3/s 54 62 7 (14) 88 139 50 (57)
October m3/s 126 181 55 (44) 297 322 25 (8)
November m3/s 222 224 2 (1) 606 570 −37 (−6)
December m3/s 179 200 22 (12) 427 482 55 (13)
Annual m3/s 80 90 10 (12) 178 208 30 (17)
One-day minimum m3/s 22 23 1 (4) 30 40 10 (34)
Three-day minimum m3/s 24 24 1 (3) 31 43 12 (40)
Seven-day minimum m3/s 25 26 1 (4) 33 47 14 (41)
30-day minimum m3/s 30 33 4 (12) 40 62 22 (55)
90-day minimum m3/s 36 43 8 (21) 62 86 24 (40)
One-day maximum m3/s 1995 1875 −120 (−6) 4635 5625 990 (21)
Three-day maximum m3/s 1180 1219 39 (3) 3408 4527 1119 (33)
Seven-day maximum m3/s 816 843 27 (3) 2144 2904 760 (35)
30-day maximum m3/s 497 438 −59 (−12) 1247 1286 39 (3)
90-day maximum m3/s 278 293 15 (5) 748 801 53 (7)
Date of minimum Day 172 191 19 (11) 225 219 −6 (−3)
Date of maximum Day 301 311 10 (3) 304 315 11 (4)
Low pulse count Number 13.0 6.5 −7 (−50) 10.0 8.5 −2 (−15)
Low pulse duration Day 4 5 1 (27) 5 2 −3(−56)
High pulse count Number 7.5 7.5 0 (0) 7.5 10.0 3 (33)
High pulse duration Day 3 2 −1 (−33) 3 3 0 (0)
Rise rate Number 6.8 6.6 0 (−3) 15.4 20.0 5 (30)
Fall rate Number −4.2 −4.2 0 (−2) −8.0 −16.1 −8 (102)
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post-2000 period than in the pre-2000 period, respectively 
(Table 2).

3.3 Alterations of the average flow

The results of the Sen slope test show that the mean annual  

discharge in the Vu Gia (p = .012) and Thu Bon (p = .027) 
basins significantly increased in the pre-2000 period by 
0.14 m3/s/year and 0.25 m3/s/year, respectively. However, dur
ing the post-2000 period, the annual discharge slightly 
decreased in the Vu Gia (by 0.21 m3/s/year) and slightly 
increased in the Thu Bon (by 0.1 m3/s/year) (Fig. 8).
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Figure 7. GPD of the POT in the pre-2000 and post-2000 periods for the (a) Vu Gia basin and (b) Thu Bon basin.
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The flow alteration in the dry and rainy seasons led to 
changes in the average flow in both basins. For the magnitude 
of the flow metrics, the average flow discharge in the Vu Gia 
(mean, Q40, Q60) was positively impacted from 2001 to 2011 
and negatively impacted with extreme grades from 2012 to 

2020 (Fig. 4(a)). The average flow discharge in the Thu Bon 
was mostly positively impacted (Fig. 4(b)). In the post-2000 
period, the average annual flows in the Vu Gia and Thu Bon 
increased by 12% (from 80 to 90 m3/s) and 17% (from 178 to 
208 m3/s), respectively (Table 2).
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Figure 8. Long-term annual discharge and rainfall in the (a) Vu Gia basin and (b) Thu Bon basin. The black and red (shaded) lines are the discharge, and the blue bars 
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Figure 9. Temporal and spatial variations in the rainfall in the VGTB basin. (a) Mean annual rainfall in the pre-2000 period, (b) mean annual rainfall in the post-2000 
period, and (c) mean annual rainfall changes in the post-2000 period relative to the pre-2000 period. (d–g) Long-term monthly means of the dry season, rainy season, 
annual rainfall, and one-day maximum values from 1979 to 2020.
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3.4 Temporal and spatial variability in the relationships 
between rainfall and discharge

The impact of climate variability and the generated upstream 
inflow and operation of dam reservoirs are causing changes in 
time and space. Therefore, we wanted to investigate the climate 
change/variability drivers of flow alterations. Figure 9(a) and (b) 
show spatiotemporal variations in the rainfall in the VGTB basin. 
The most considerable changes in rainfall in the pre-2000 and 
post-2000 periods occurred mainly in the mountainous areas; 
smaller changes in rainfall occurred in the plains (Fig. 9(c)). The 
Mann-Kendall test of the rainfall showed no statistically signifi
cant trends in the dry season, rainy season, annual rainfall, and 
one-day maximum values in the VGTB basin. However, a slight 
increase was estimated from 1979 to 2020 (Fig. 9(d–g)). A com
parison of the rainfall in the post-2000 period with that in the pre- 
2000 period shows that the rainfall increased slightly in the rainy 
season and annually and rose sharply in the dry season, by 4.94%, 
11.65%, and 26.84%, respectively (Table 3).

In this paper, we mainly compare the pre-2000 and post-2000 
periods. Therefore, we discussed these two periods first; then, we 
elaborated by further discussing post-2010 (2011–2020) to pro
vide more evidence of dam impacts. Figure 10(b) shows that the 
correlations between the cumulative runoff and cumulative 
rainfall in the Thu Bon were linear in the three periods. 
However, in the Vu Gia, the curves were linear from 1979 to 
2010 and changed suddenly starting in 2011 (Fig. 10(a)). This 
result shows that water transfer via the Dak Mi 4 plant reduced 
the flow on the Vu Gia River. Water stress on the Vu Gia 
resulted from the diversion of water at Dak Mi 4 to the Thu Bon. 

The total rainfall in the dry season in the Vu Gia basin 
during the post-2010 period was 1090 mm, 47.4% higher than 
that in the pre-2000 period and 5.7% lower than that in the 
post-2000 period (Fig. 11(a)). The dry flow was 36.1% and 
46.8% lower than those in the pre-2000 and post-2000 periods, 
respectively. The mean annual flow in the post-2010 period 
was 82 m3/s, 33.9% and 40.4% lower than those in the pre-2000 
and post-2000 periods, respectively (Fig. 11(a)). In the Thu 
Bon basin, the total rainfall values in the dry seasons of the pre- 
2000, post-2000, and post-2010 periods were approximately 
1021, 1204, and 1193 mm, respectively. Once it began to 
receive flow from the Vu Gia River, the flow of the Thu Bon 
in the post-2010 period was higher than those in the pre-2000 
and post-2000 periods by 59.5% and 42.7%, respectively (Fig. 
11(b)). Currently, Da Nang city often lacks water for domestic 
and agricultural production in the dry season. In addition, 
saltwater intrusion is more severe. Da Nang city and Quang 
Nam Province often place stress on water sources from the 
VGTB basin. Da Nang city requires Quang Nam to compen
sate for the water transferred by the Dak Mi 4.

3.5 The impact of hydropower and diversion on the 
alteration flow regime

3.5.1 The impact of hydropower and diversion on flood 
control
The most critical flood control issues for the downstream 
part of the VGTB basin are the reduction in the peak flood 
and the duration of the high-water level (Nguyen 2020). 

Table 3. Changes in the dry season, rainy season, and annual rainfall values in the pre-2000 and post-2000 periods.

Time

Pre-2000 Post-2000

Rainfall (mm) Rainfall (mm) Change (%)

Dry season Mean 831 1054 + 26.84
One-day maximum 132 90 − 31.85

Rainy season Mean 1881 1974 + 4.94
One-day maximum 301 389 + 29.35

Annual 2712 3028 + 11.65
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Figure 10. Curves of the cumulative rainfall and discharge in the pre-2000 (1979–2000), post-2000 (2001–2010), and post-2010 (2011–2020) periods for the (a) Vu Gia 
basin and (b) Thu Bon basin.

10 B. Q. NGUYEN ET AL.



The flood storage capacity influences the decrease in the 
peak flood downstream. It is important to forecast the flow 
to the reservoir to maintain a suitable storage capacity. 
Currently, there are few raingauges in the basin, which 
makes it challenging to accurately forecast the flow to the 

reservoirs. The large flood of 2017 is a typical example; the 
inaccurate flow forecast of the Dak Mi 4 reservoir did not 
lead to a cut-off flood peak, which resulted in flooding 
downstream (Fig. 12). The Song Tranh 2 reservoir had 
better forecasts and operation.
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Figure 12. (a) River network and reservoirs upstream of the VGTB basin. (b) Inflow, outflow and diversion of the Dak Mi 4 reservoir. (c) Inflow and outflow of the Song 
Tranh 2 reservoir in the 2017 flood.
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3.5.2 The impact of water diversion structures
According to the research results of Firoz et al. (2018), the 
intensity and frequency of droughts in the entire VGTB 
basin mainly depend on upstream hydropower operation 
and water transfer from the Vu Gia basin to the Thu Bon 
basin by the Dak Mi 4 plant. The average annual amount 
of water transferred by the Dak Mi 4 plant is approxi
mately 1.08 × 109 m3 (average 34.17 m3/s, 26.7% of the 
Vu Gia River’s flow). Moreover, with high energy demand 
in the dry season, some of the water needed for the mini
mum release of the Vu Gia River was used for power 
generation and discharge to the Thu Bon River. Part of 
the sediment along the flow is transferred to the Thu Bon 
basin, which leads to an imbalance of the natural state in 
the Vu Gia basin. This imbalance affects the sediment and 
morphology downstream.

IHA was used to analyse the periods before and after the 
building of the Dak Mi 4 reservoir at Thanh My: pre-2010 
(1977–2010) and post-2010 (2011–2020). The flow regime 
alterations were considerably reduced during the dry and 
rainy seasons (Fig. 13). The minimum and low-flow release 
decreased by 53.5–76.3%. The maximum discharges signif
icantly decreased during the post-2010 period by 37.5%. 
Similarly, the high-flow clearance decreased by 57.3–67.4%. 
As a result, the date of the minimum discharge increased 
from 180 to 193 days.

4 Discussion

The results of the analysis show that the flow regime changes in 
the dry and rainy seasons in the two basins (Figs 4–8, Table 2). 
The annual discharge in the Vu Gia basin decreased from 2001 
to 2020 (especially from 2011 to 2020), although the correspond
ing rainfall increased (Figs 9–11). Therefore, we argue that these 
alterations in discharge are mainly due to reservoir operations 
and water transfer. However, another factor is land use/cover 
(LULC), which also has a significant impact on watershed 
hydrology. Therefore, we investigated whether the impacts of 
land-use changes act as drivers of flow alterations.

4.1 Drivers of flow alterations from land-use change

To understand the hydrological regime of the basin, it is 
necessary to assess the relationship between the watershed 
hydrological processes and LULC change (Meiyappan and 
Jain 2012). LULC changes may significantly affect the 
watershed hydrological regime and surface runoff of the 
basin (Jia et al. 2007). To clarify the effects of LULC change 
on the runoff in the VGTB basin, LULC maps from 2001, 2005, 
2010, and 2020 were used to analyse the river section upstream 
of the Thanh My and Nong Son stations. The analysis shows 
that the land cover in the upstream area is dominated by 
forests, followed by mixed agricultural land, built-up areas, 

Figure 13. Changes in the extreme and monthly discharges before the Dak Mi 4 reservoir opened (pre-2010) and after the Dak Mi 4 reservoir opened (post-2010) at the 
Thanh My station from the IHA results.

Table 4. Statistics of LULC change in the VGTB basin from 2001 to 2020, from upstream to Thanh My station in the Vu Gia basin and Nong Son station in the Thu Bon 
basin.

No. Land-use types

Year 2001
Change in 2005 compared to 

2001
Change in 2010 compared to 

2001
Change in 2020 compared to 

2001

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)

1 Forest 2710.98 51.89 −31.70 −1.17 100.69 3.71 59.16 2.18
2 Mixed agricultural land 2404.10 46.02 30.89 1.28 −112.92 −4.70 −78.44 −3.26
3 Built-up area 33.99 0.65 0.48 1.42 8.32 24.47 15.37 45.22
4 Water 74.91 1.43 0.32 0.43 3.91 5.22 3.91 5.22
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and water (Table 4). The forest area increased by 2.18% from 
2001 to 2020. The other LULCs changed minimally over time. 
This result is similar to the research of Nauditt et al. (2017). 
Therefore, LULC changes cannot explain the changes in flow 
in the VGTB basin, and thus the flow regime alterations are 
likely related to the operation of the reservoirs.

4.2 Challenges of water resource management in the 
downstream VGTB basin

The impacts of reservoir operation are particularly pro
nounced for the Vu Gia basin. Therefore, the Vu Gia basin 
is the most vulnerable. The Vu Gia basin mainly supplies 
water for Da Nang city and sizeable agricultural irrigation 
systems in Quang Nam Province (Fig. 1(a)). The flow and 
water level downstream during the dry season depend on the 
operation of the reservoirs. The flow from the reservoirs also 
maintains water levels to supply water for domestic use and 
agricultural production and to reduce salinity. The changes in 
flow impact the cropping pattern downstream, which is 
highly dependent on the water during the dry season. The 
reduction in flow during the rainy season is expected to 
reduce sediment and nutrient transport and possibly affect 
aquatic habitats (Pitlick and Wilcock 2001). The change in 
water quality due to sediment imbalance and the loss of 
habitats have potentially created long-term impacts for com
munities in the VGTB River basin.

Hydroelectric reservoirs upstream have retained significant 
amounts of coarse sand, gravel, and suspended sediment 
instead of transporting them downstream. This sediment 
reduction may aggravate erosion downstream from the dam. 
In addition, sand mining in the middle and downstream areas 
has removed large deposits of sediments from the riverbed. 
Finally, the changes in deposition have led to bed incision, 
which then decreases the water level. Bed incision has affected 
drinking water and agricultural production and increased salt
water intrusion. These issues have been detected in the 
Mekong and Red rivers (Kondolf et al. 2014, D. V. Vu et al.  
2014, Nhan and Cao 2019, Van Binh et al. 2021). We anticipate 
that similar consequences are highly likely to occur in the 
VGTB basin. In recent years, saltwater intrusion hazard/risk 
has increased in Vu Gia River and strongly impairs socio- 
economic factors in Danang city, especially agricultural pro
duction and drinking water supply (Viet 2014, Nga et al. 2020).

5 Conclusions and outlook

We evaluated the long-term discharge changes in the VGTB 
river basin over 44 years (1977 to 2020) through a detailed 
analysis of runoff and related factors such as rainfall, land use, 
reservoir operation, and water diversion. We found that reser
voir operation and water transfer by the Dak Mi 4 plant are the 
main reasons for flow alterations in the Vu Gia and Thu Bon 
rivers.

Based on the indicators analysed, the flow regime in the 
post-2000 period changed compared to that in the pre-2000 
period. The Vu Gia basin changed more than the Thu Bon 
basin. Since 2011, reservoir operations have reduced the max
imum and high-flow discharges downstream, exceeding the 

climate change effect. However, in the dry season, due to the 
impact of water transfer, the minimum, low-flow release 
increased in the Thu Bon basin and decreased in the Vu Gia 
basin. Reducing the flow downstream of the Vu Gia River 
during the dry season leads to a decrease in the water level, 
affecting the operations of pumping stations supplying domes
tic and agricultural water in Da Nang city and parts of Quang 
Nam Province. In addition, due to the decreased flow down
stream, the salinity condition in Da Nang has become more 
severe in recent years. Salinity penetrates farther inland and at 
higher levels, seriously affecting the water supply.

Reservoirs have helped to regulate flow and reduce flooding 
in downstream areas. However, there are still some floods with 
low regulatory efficiency. The cause is indicated by the few 
raingauging stations upstream. Therefore, maximizing the 
positive efficiency of reservoirs and improving the flow fore
casting of reservoirs by constructing more rainfall gauging 
stations is necessary.

We also note that in the entire VGTB basin, there are only 
two stations that measure upstream streamflow. The down
stream tributaries include many hydropower plants. This leads 
to difficulty in fully investigating the streamflow and impact of 
reservoirs. Therefore, in our future work we will study the 
entire basin using a hydrological model.
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12

13 Highlights

14  A semi-distributed hydrological model, SWAT (Soil and Water Assessment Tool), was developed for 

15 a tropical river in Vietnam, the Vu Gia Thu Bon (VGTB) basin considering two plausible scenarios: with-

16 dam and without-dam.

17  The coupled impacts of reservoir operations, water transfer, and quantify variations in the multi-sub-

18 basin contributions to the water budget.

19  The cascading reservoirs decreased in the Vu Gia sub-basins and increased in the Thu Bon sub-basins.

20  The water diverted to the Thu Bon River was governed and reduced by the cascading hydropower 

21 dams. 

22  The operation of reservoirs has partially compensated for the lost water in the Vu Gia sub-basins. 

23
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24 Abstract: Hydraulic infrastructures, such as reservoirs and water diversion channels, are known to cause 

25 altered streamflow worldwide. Therefore, this study aims to assess the coupled impacts of reservoir 

26 operations and water transfer on downstream streamflow over 42 years (1979–2020) for a tropical river in 

27 Vietnam, the Vu Gia Thu Bon (VGTB). We also quantified variations in the multi-sub-basin contributions 

28 to the water budget associated with hydraulic structure development. In this regard, a semi-distributed 

29 hydrological model, SWAT (Soil and Water Assessment Tool), was developed for the entire VGTB basin 

30 considering two plausible scenarios: with-dam and without-dam. We found that the reservoirs substantially 

31 affected the streamflow during the 2011–2020 period when 12 cascading hydropower dams were 

32 constructed in the Vu Gia sub-basins. The cascading reservoirs across the Vu Gia River reduced the annual 

33 average streamflow by 28.1% during this period, whereas their influence was augmented by 13.9% at 

34 reaches further downstream. In contrast, the local reservoir and flow diversions created on the Thu Bon 

35 River resulted in a 6.5% increase in streamflow. The upstream reservoir operation significantly affected 

36 streamflow at the midstream stations by 27.8% compared with the no-dam period. The streamflow decreased 

37 in the dry season by 5.6% in the Vu Gia sub-basins and increased by 61.7% in the Thu Bon sub-basins. 

38 However, the impacts were reduced in the wet season by 41.3% due to the Dak Mi 4 reservoir operation, 

39 which is considered to be the most significant influence. It was found that the water diverted to the Thu Bon 

40 River was governed and reduced by the cascading hydropower dams. Therefore, the operation of 11 

41 reservoirs has partially compensated for the lost water in the Vu Gia sub-basins, to which the Dak Mi 4 

42 plant has transferred an amount of 19.7 m3/s (14%). Our findings provide a classification of the impact of 

43 cascading dams and diversion structures and their interaction with climate change.

44 Keywords: Vu Gia Thu Bon River basin, Reservoir, Water diversion, Streamflow, SWAT.

45 1. Introduction

46 All over the world, hydrological cycles within river basins play a key role in providing streamflow to 

47 downstream deltaic systems (Oki & Kanae, 2006). The duration and intensity of the streamflow are 

48 fundamentally dependent on climatic variables such as precipitation (Ahn & Merwade, 2014; Souvignet et 

49 al., 2014) and on the operation of basin-wide infrastructures such as hydropower dams, storage reservoirs, 
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50 and water diversion structures (Ribbe et al., 2017). Currently, most rivers worldwide are interrupted by 

51 dammed reservoirs (Zhou et al., 2016). The boom in reservoir construction has occurred particularly in 

52 regions with emerging economies, such as Southeast Asia (SEA), for irrigation, drinking water, hydropower 

53 generation, and hydrological hazard control (Zarfl et al., 2015). It is undeniable that reservoirs are necessary 

54 for flood control and securing water supplies for agriculture and the environment in tropical river basins 

55 with complex climate characteristics, such as SEA. However, despite their benefits, reservoirs remain 

56 controversial owing to their potentially negative impacts on streamflow. Reservoir operations alter the 

57 natural flow regime daily and long-term (Mittal et al., 2016; Van Binh, Kantoush, & Sumi, 2020). 

58 Additionally, hydrological extremes can be intensified by ineffective management of reservoir water, which 

59 can sometimes have a greater impact than climate change  (Di Baldassarre et al., 2018; Vu et al., 2017). 

60 Therefore, there is a need to evaluate the effects of reservoir operations on streamflow in specific multi-

61 basin catchments.

62 The Vu Gia Thu Bon River (VGTB) basin in Central Vietnam and its water resources have been 

63 developed for various purposes, including energy, agriculture, flood mitigation, water supply, and saltwater 

64 intrusion control (Firoz et al., 2018; Ribbe et al., 2017; Viet, 2014). However, the basin faces challenges in 

65 securing water supply and mitigating severe flooding due to climate change and the rapid development of 

66 artificial hydro-structures. Since 2007, 18 hydropower dams have been built, of which 12 are on the Vu Gia 

67 River, six are in the Thu Bon River, and a diversion channel carries water and sediment from the Vu Gia to 

68 the Thu Bon River (Fig. 1a). Four large reservoirs, including A Vuong, Song Bung 4, Dak Mi 4, and Song 

69 Tranh 2, have the greatest influence on the effectiveness of downstream flood control (T. H. Nguyen, 2020). 

70 The number of dams is projected to reach 58 by 2030 (ICEM 2008). These cascaded reservoirs may alter 

71 the hydrological regime of rivers by changing the seasonal flow (Ngo et al., 2018). Therefore, addressing 

72 the complex interactions between reservoir operations and natural hydrological processes is essential for 

73 better water resources and environmental management. 

74 Various approaches have been used to examine and quantify the effects of hydraulic infrastructure on 

75 runoff. Popular methods include streamflow time-series studies that look at monthly, seasonal, annual, and 
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76 frequency changes to determine the anthropogenic effects on streamflow (Binh et al., 2020; Y. Zhang et al., 

77 2018) and relationships between runoff and climate variables (Johnson et al., 1991; D. Wang & Hejazi, 

78 2011; H. Wang et al., 2016). The fundamental analysis of hydro-climatic time series can provide the first 

79 insight into hydrological systems. However, they may be incapable of capturing the nonlinear nature of 

80 hydrological systems (Firoz et al., 2018). Hydrological models play an essential role in detecting and 

81 explaining changes in water resource basins (Sorooshian et al., 2008). Hydrological reconstruction using 

82 models is helpful for studying changes in basin hydrology. The advantage of hydrological models is that 

83 they can simulate scenarios with and without dams and extract the results at various stream locations, where 

84 the assessment for a group of cascading dams can be evaluated separately. The combination of hydrological 

85 models, water diversion, and reservoir operation is a promising method utilised in this study. A semi-

86 distributive hydrological model, SWAT, can simulate the hydrological characteristics of the basin integrated 

87 with the basic reservoir operation (Carvalho-Santos et al., 2017; Chhuon et al., 2016; Loi et al., 2019; L. H. 

88 Nguyen & Fukushi, 2019; Shrestha et al., 2018; Vale & Holman, 2009; G. Wang & Xia, 2010). 

89 Several studies have adopted numerical models to investigate the hydrological regimes of basins. 

90 However, previous studies have not considered the combination of reservoir operation and diversion, and 

91 have only used short study periods (Firoz et al., 2018; Loi et al., 2019; Nauditt et al., 2017; H. T. Nguyen et 

92 al., 2020; Vu et al., 2017). As a result, these studies could not correctly capture the impact of reservoir 

93 operation on streamflow. This study has addressed these two significant gaps. Another issue is that only two 

94 stations (Thanh My on the Vu Gia sub-basins and Nong Son on the Thu Bon sub-basins) monitor streamflow 

95 discharge. Previous studies that analysed historical data at these two stations could not clearly show the dam 

96 impacts on streamflow (Loi et al., 2019; Vu et al., 2017), thus demanding a more advanced methodology. 

97 Firoz et al. (2018) and Nauditt et al. (2017) quantified the effects of only 8 out of 18 dams for 5 years after 

98 the operation commencement. This means that the impact of newly built dams has not been studied over a 

99 more extended period.

100 Moreover, these studies did not combine the hydrological module with the reservoir operation module; 

101 instead, they simulated them separately. Many other researchers (e.g., Loi et al., 2019; H. T. Nguyen et al., 
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102 2020; Vu et al., 2017) have not considered reservoir operation in their models. Another knowledge gap to 

103 date is that previous studies have not quantified the contribution of each sub-basin and the diversion 

104 channel's role in the hydrological processes of the VGTB basin. Therefore, this study aims to fill these 

105 knowledge gaps by assessing the changes in the streamflow discharges at multiple spatial locations (i.e. 

106 upstream, midstream, and downstream) of different groups of cascading dams and quantifying the effect of 

107 the diversion channel. The advanced model incorporates a hydrological, reservoir operation, and water 

108 diversions module. Therefore, we can quantify with a high confidence level the contribution of each group 

109 of dams on downstream flow alterations and the contribution of each sub-basin to the downstream flow 

110 discharge. Finally, we discuss the implications of hydraulic structures on agriculture, water supply, saltwater 

111 intrusion, and flood control.

112 The main objective of the present study is to quantify the coupled impacts of reservoir operation and 

113 water transfer on streamflow and water balance in the VGTB basin at various locations. The hydrological 

114 semi-distributed model was selected to simulate the streamflow from 1979 to 2020 and the effects of 

115 cascading hydraulic structures. The principal research aims are to (1) model the basin's natural streamflow, 

116 (2) quantify the effects of hydraulic infrastructures, (3) distinguish the effects of four major reservoir 

117 operations on downstream flow, and (4) quantify the flow contribution of the sub-basins. The findings of 

118 this study will provide a detailed understanding of the effects of hydraulic infrastructures such as 

119 hydropower reservoirs and water diversion structures on downstream flow. Furthermore, the insights gained 

120 from this basin's hydraulic infrastructure effects can assist water managers in Vietnam and other tropical 

121 monsoon regions.

122 2. Study area

123 The VGTB River basin (area 10,000 km2) is located in the central region of Vietnam and accounts for 

124 approximately 2.5% of the total water volume in Vietnam (RETA, 2011) (Fig. 1a). The topography of the 

125 VGTB basin is varied. From west to east it changes from high mountains to undulating hills, with a slope 

126 of 20–30%. The altitude, steep terrain, and significant rainfall provide great potential for hydropower energy 

127 in the upstream part of the basin. The primary land use is forest (62.05%), and the predominant soil type is 
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128 clay and silt loam (accounting for 83.33%) (Fig. 1b, 1c). Agriculture is an important economic activity in 

129 the basin. Paddy rice is the most important agricultural crop, comprising approximately 70% of irrigated 

130 agriculture (Viet, 2014).

131 The characteristics of the sub-basins are shown in Figure 2a and Table 1. There are five major sub-basins 

132 from the headwater to the Ai Nghia station in the Vu Gia River (i.e. Con, A Vuong, Bung, Giang, and Dak 

133 Mi Rivers). From upstream to the Giao Thuy station in the Thu Bon River, there are also five major sub-

134 basins (i.e., the Khe Dien River, Que Lam River, Truong River, Tranh River, and Khang River). In the 

135 VGTB basin, the inter-basin water diversion from the Vu Gia to the Thu Bon River occurs in both the 

136 upstream and downstream sections through the Dak Mi 4 plantand Quang Hue River, respectively (Fig. 1a). 

137 The data obtained over 42 years (1979–2020) show that the average annual rainfall of the entire basin is 

138 2,863 mm, varying significantly from 2,184 mm in the lowlands to over 4,188 mm in the southern 

139 mountainous areas (Fig. 2a). Precipitation varies by season, with 48–81% of the annual rainfall concentrated 

140 between September and December. The average temperature of the basin is 25.2oC, with the lowest 

141 temperatures in December or January and the highest in June and July (Fig. 2b). The streamflow varied 

142 significantly between the seasons, and the flood season from October to December corresponded to the 

143 heaviest rainy period. The flow in this period accounted for approximately 62.5%–69.2% of the total annual 

144 flow. April is the driest month, accounting for only 2%–3% of the annual flow (RETA, 2011). 

145 3. Methodology and Material 

146 3.1. SWAT model

147 The SWAT model was developed by Arnold and Srinivasan, researchers of the United States Department 

148 of Agriculture Research Service (USDA-ARS), and Texas AgriLife Research, respectively. It consists of a 

149 comprehensive computer simulation tool for watershed-scale studies that integrates multiple components, 

150 such as climate, hydrology, land cover, reservoir operation, and management practices (Arnold et al., 1998; 

151 Keitzer et al., 2016). The model divides the watershed into sub-basins. These sub-basins are further 

152 subdivided into soil characteristics, and the land use and slope units are known as hydrological response 

153 units (HRUs). The SWAT model was integrated with the GIS software. The model comes in many different 
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154 versions, such as ArcSWAT, MWSWAT, and QSWAT. For this study, SWAT version 1.9 was used with 

155 the QGIS 2.6.1. 

156 3.2. Input data

157 Data play a crucial role in hydrological models. We collected streamflow, rainfall, temperature, relative 

158 humidity, wind speed, solar radiation of stations, topography, land use, soil map, and dam data in the entire 

159 VGTB basin to set up, calibrate, and validate the SWAT model.

160 3.2.1. Streamflow

161 Daily streamflow data at the Thanh My and Nong Son stations during 1979–2020 were used to calibrate 

162 and validate the results from the SWAT model (Fig. 1a). Data were collected from the Mid-Central Regional 

163 Hydro-Meteorological Center (MCRHMC n.d.). The monthly discharge released from the reservoirs from 

164 2017 to 2020 was collected from the Natural Disaster Prevention and Control of Quang Nam Province 

165 (NDPAC, n.d.).

166 3.2.2. Meteorology

167 We collected daily rainfall data from 15 stations distributed over the entire VGTB basin from 1979 to 

168 2020, including nine stations in mountainous areas and seven stations in lowland areas. Daily temperature 

169 data were collected at two stations, Da Nang (lowland area) and Tra My (mountainous region) (Fig. 1a).

170 3.2.3. Topography

171 In this study, topographic data (DEM) benefited from the ‘Land Use and Climate Change Interaction in 

172 Central Vietnam’ (Lucci) project (www.lucci-vietnam.info), 30mx30m spatial resolution (Fig. 1a). The 

173 DEM was created by combining Shuttle Radar Topography Mission (SRTM) data and isolines (ISO 

174 19115:2003 for geographic information metadata). The DEM map has been formatted as a spatial 

175 representation Type A grid and coordinate system Universal Transverse Mercator (UTM) zone 48N with a 

176 reference date of 2014.

177 3.2.4. Land use and soil map

178 Land use and soil map data were also collected from the Lucci project with a 30mx30m resolution (Fig. 

179 1b, 1c). Land use was created based on Landsat images, SPOT images, and field survey data. The soil map 
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180 was digitised using the National Institute of Agriculture Planning and Protection (NIAPP) data. The dataset 

181 reference dates for land use and soil maps were obtained in 2013 and 2011, respectively. 

182 3.2.5. Dams

183 Eighteen reservoirs in the SWAT model were collected from Decision 1865/QD-TTg: Procedures for 

184 operating reservoir systems in the VGTB River basin (Government of Vietnam, 2019). The characteristics 

185 of dams (volume, year of construction, water release, and operating rules) were collected from the Natural 

186 Disaster Prevention and Control of Quang Nam province and are shown in Table 2 (NDPAC, n.d.).  

187 3.3. Simulation scenarios

188 We evaluated the long-term alteration of streamflow in the VGTB basin over 42 years by analysing 

189 observational data as well as related factors such as reservoir operation, rainfall, and land use. We found 

190 that the flow alterations mainly depended on reservoir operation and water transfer. Therefore, this study 

191 evaluates the reservoir operation and water transfer effects on the streamflow. The model was simulated for 

192 two scenarios over the 42 years from 1979 to 2020 and focused on the period 2011–2020: (a) without-dam 

193 and (b) with-dam. The model parameters were kept the same for both scenarios. The reservoir component 

194 was inactivated when simulating the flow under natural conditions (without-dam). 

195 All reservoirs were considered in the study, and then the impacts of the largest reservoirs (i.e. A Vuong, 

196 Song Bung 4, Dak Mi 4, Song Tranh 2) were evaluated. Each reservoir was independently set up and 

197 released (the other reservoirs were inactive). The flow contribution rates of the sub-basins were evaluated 

198 in two cases: with and without-dam. 

199 3.4. Model setup

200 The basin was divided into 153 sub-basins and 2580 HRUs. The sub-basins were divided based on slope 

201 classes (0–5, 5–10, 10–20, 20–30, and > 30 degree), six land classes (Fig. 1b), six soil classes (Fig. 1c), 

202 locations of hydrological stations and dams, water transfer and receiving sites, and uniform distribution of 

203 size between sub-basins. The water transferred from the Vu Gia sub-basins to the Thu Bon sub-basins via 

204 the Dak Mi 4 and Quang Hue rivers was also established. The water transfer via Dak Mi 4 was determined 
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205 for each month as the average daily value (WURESN, the average amount of water withdrawn from the 

206 reservoir each day in the month for consumptive water 104 m3). Downstream, the water transferred by the 

207 Quang Hue River was determined for each month as the average daily water (WURCH – average daily 

208 water removal from the reach for the month 104 m3/day). From field surveys and other data, the percentage 

209 of runoff transferred to the Thu Bon River from 1979 to 2000 and from 2001 to 2020 was 13% and 43%, 

210 respectively. 

211 3.5. Calibration and validation processes

212 The model was simulated during the period 1979–2020. The year 1979 was used to warm up the model. 

213 The calibration period was 1980–1995, while two periods were used to validate the model; the first 

214 validation period was 1996–2010, and the second was 2011–2020. The observed streamflow data at the 

215 Thanh My and Nong Son stations were used for model calibration and validation. The reservoir’s released 

216 streamflow was calibrated in four large reservoirs (A Vuong, Song Bung 4, Dak Mi 4, Song Tranh 2) from 

217 2017 to 2020 by monthly time steps.

218 The SWAT-CUP tool (SWAT Calibration and Uncertainty Procedures) with SUFI-2 algorithms was 

219 used to evaluate the sensitivity of the parameters of the SWAT model (Abbaspour, 2013). In addition, five 

220 commonly used model efficiency criteria (Moriasi et al., 2015) were used to evaluate the model performance, 

221 including the correlation coefficient (R), Nash-Sutcliffe coefficient (NSE), per cent bias (PBIAS), root mean 

222 squared error (RMSE), and the ratio of the root mean square error to the standard deviation of measured 

223 data (RSR). 

224 4. Results

225 4.1. Calibration and validation of SWAT model

226 The simulated and observed streamflow plots for the calibration and validation performances are 

227 presented in Figures 3a and 3b, respectively. The five efficiency criteria presented in Table 3 reveal the 

228 model quality, which agrees with the observed data. The R, NSE, RSR, RMSE, and PBIAS coefficients at 

229 the Thanh My and Nong Son stations in the calibration periods were 0.82, 0.66, 0.58, 119.61 m3/s, 3.76, and 
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230 0.90, 0.81, 0.44, 214.28 m3/s, 2.28, respectively. The model’s results are consistent with the observations in 

231 the first and second validation periods. The differences between the observed and simulated results can be 

232 explained by the omission of irrigation demands on agricultural activities. 

233 The calibration of the monthly streamflow released from the four reservoirs is in excellent agreement 

234 with the observed data (Fig. 3c, 3d, 3e, and 3f). The NSE values of the A Vuong, Song Bung 4, Dak Mi 4, 

235 and Song Tranh 2 reservoirs were 0.82, 0.70, 0.65, and 0.81, respectively. Overall, the validation results 

236 indicate that the present model is suitable for further examination of the variation in streamflow under the 

237 effect of the reservoirs.

238 4.2. Assessment results of spatial and temporal natural streamflow without dams 

239 Natural flow simulation results from 1980 to 2020 (without-dam scenarios) show that the Thu Bon sub-

240 basins have more abundant surface water resources than the Vu Gia sub-basins (Fig. 4). As a result, 

241 streamflows in the dry and rainy seasons at the Thu Bon River stations are more significant than those in 

242 the Vu Gia River. The average annual streamflows at Thanh My, Ai Nghia (in Vu Gia), Nong Son, and Giao 

243 Thuy (in Thu Bon) are 142 m3/s, 215.5 m3/s, and 285.7 m3/s, 395.3 m3/s, respectively (Fig. 4a). The 

244 respective median streamflows are 78 m3/s, 124.2 m3/s, 163.1 m3/s, and 220.2 m3/s (Fig. 4b).

245 4.3. Effects of cascading reservoirs operation on daily streamflow 

246 Figure 5 shows a visual comparison of the simulated daily streamflow for without-dam and with-dam 

247 scenarios from 2011 to 2020. The streamflow time series presented a strong daily variation in the no-dam 

248 scenario, with low dry and high peak flows during the rainy season (Fig. 5a). In the dry season of the with-

249 dam scenario, the streamflow decreased at Thanh My and Ai Nghia stations, especially at Thanh My (Fig. 

250 5b). The low level (red colour) of the streamflow is prominent throughout the entire period. In contrast, the 

251 streamflow increased at the Nong Son and Giao Thuy stations. During the rainy season, streamflow 

252 decreased at the four stations. The ratio of difference streamflow between with-dam and without-dam 

253 scenarios at Thanh My, Nong son, Ai Nghia, Giao Thuy is 0.2–1.65, 0.53–3.39, and 0.2–2.69, 0.46–2.39, 

254 respectively (Fig. 5c). 
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255 4.4. Effects of cascading reservoirs operation on the water balance

256 Reservoir operations inverted the seasonality of the naturalised streamflow regime. The strong seasonal 

257 variation and streamflow increased during the dry season and decreased during the rainy season. In contrast 

258 to Fairoz et al. (2018), we found that the streamflow in the with-dam scenario was slightly changed 

259 compared to the without-dam scenario (Fig. 6b, 6d, and 7, Table 4). In December, the reservoirs were 

260 released to reduce storage capacity, and the streamflow was more extensive than in the without-dam scenario 

261 (Fig. 6b, 6d). Water diversion led to decreased streamflow (Fig. 6a, 6c, and 7, Table 4). As a result, Thu 

262 Bon's water resources became more abundant, while Vu Gia's were reduced.

263 For the Thanh My station, located upstream of the Vu Gia, the average monthly streamflow decreased 

264 by approximately 42.5 m3/s, from 151.6 m3/s to 109.1 m3/s. As a result of water diversion by the Dak Mi 4 

265 plant, the dry season streamflow decreased by 25.5%. In the rainy season, the streamflow decreased by 79.6 

266 m3/s, from 266.7 m3/s to 187.1 m3/s (Fig. 6a, Fig. 7, Table 4). On the other hand, as a result of receiving 

267 water from Vu Gia, the dry, rainy, and annual streamflow increased at Nong Son by 57.8 m3/s, 31.9 m3/s, 

268 49.2 m3/s, respectively (Fig. 6b, Fig. 7, Table 4). 

269 The impacts of reservoir operation, water transfer of the Dak Mi 4 plant, and Quang Hue River are most 

270 obvious downstream. During the early dry season, reservoirs in the Dak Mi, Bung, A Vuong, and Con sub-

271 basins augmented the flow discharges at Ai Nghia. However, the reservoir storage volume decreased at the 

272 end of the dry season (June–August), while the Dak Mi 4 plant maintained the generation capacity. As a 

273 result, the streamflow decreased compared to the without-dam scenario (Fig. 6c, Fig. 7). In the dry season, 

274 the streamflow decreased by 1.1% at Ai Nghia and increased by 20.6% at Giao Thuy (Table 4); the 

275 streamflow in the rainy season decreased by 75.5 m3/s, 21.6 m3/s, respectively. 

276 4.5. Assessment of reservoirs operation on streamflow downstream

277 In this study, we considered the impact and distinguished the effects of four large reservoirs (A Vuong, 

278 Song Bung 4, Dak Mi 4, and Song Tranh 2) on downstream streamflow when they were operating 

279 independently. The impact level depends on the location, storage capacity, and distance to hydrological 
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280 stations. In contrast to Nauditt et al. (2017), we can conclude that the operation of the Dak Mi 4 plant 

281 significantly affects the downstream basins (Table 5, Fig. 8a and 8b). We also show that the reservoir 

282 operation at the Vu Gia River affects the downstream reaches of the VGTB basin. In general, reservoir 

283 operations are the main cause of streamflow reduction during the rainy season and increase in the dry season. 

284 The Dak Mi 4 reservoir reduced the seasonal and annual streamflow at the Vu Gia River and increased 

285 the flows on the Thu Bon River. The streamflow annual, dry, and rainy seasons at Ai Nghia decreased by 

286 16.2%, 14.5%, and 17.4%, respectively (Table 5). In contrast, the streamflow increased at Giao Thuy by 

287 6.3%, 8.1%, and 5%, respectively. A negative value for the percentage changes in the monthly streamflow 

288 compared with the no-dam scenario was observed at Ai Nghia, while a positive value was observed at Giao 

289 Thuy (Fig. 8c). At Ai Nghia, Dak Mi 4 releases less in March to store water for the driest month (April). 

290 Therefore, the streamflow decreased by 21.9% compared to the without-dam scenario.

291 The remaining reservoirs (i.e. Song Tranh 2, Song Bung 4, and A Vuong) had a negligible influence on 

292 streamflow (Table 5). In the rainy season, the reservoirs helped reduce the flood risk in the downstream 

293 floodplain due to the low release of water. Flood reduction efficiency is related to the active storage of 

294 reservoirs. The Song Tranh 2 reservoir has the most extensive functional capacity for storage, and is the 

295 most effective reservoir in terms of flood peak cut and disaster risk reduction. The streamflow during the 

296 rainy season decreased by 5.9% compared to that in the without-dam scenario (Table 5). Therefore, the 

297 Song Tranh 2 hydropower operation affects only the Thu Bon sub-basins.

298 4.6. Contribution of streamflow of sub-basins on VGTB basin

299 The hydrological responses and contributions of each group of cascading dams differed according to 

300 sub-basin locations and periods. The Dak Mi River sub-basin contributed the most significant streamflow 

301 to the Vu Gia sub-basins from 1980 to 2010 (annual flow is 97.7 m3/s) (Table 6). The Tranh River sub-basin 

302 contributes the most in the Thu Bon sub-basins, with a yearly flow of 166.1 m3/s. Therefore, hydropower 

303 plants have been constructed in these sub-basins (Fig. 1a). 
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304 Sub-basins without reservoirs (Giang, Que Lam, and Khang Rivers) remained the same in both scenarios 

305 (Table 6, Fig. 9). In basins with reservoirs (Con River, A Vuong River, Bung River, Khe Dien River, and 

306 Tranh River), the streamflow increased in the dry season and decreased in the rainy season (Table 6, Fig. 

307 9). The Dak Mi 4 plant transfers water from the Dak Mi River to the Truong River. Therefore, the dry, rainy, 

308 and annual streamflows decreased considerably in the Dak Mi River sub-basin and increased in the Truong 

309 River sub-basin (Table 6). 

310 The Dak Mi River and Tranh River sub-basins contributed the largest streamflow for the Vu Gia and 

311 Thu Bon sub-basins from 1980 to 2010 by 32.9% and 54.6%, respectively (Fig. 10a). However, in the period 

312 2011–2020 with dams, the contribution rate of the Dak Mi River was only 22.9%, lower than that of the 

313 Bung River (30.9%) (Fig. 10c). On the other hand, the Truong River Basin increased the contribution of the 

314 Thu Bon sub-basins from 10.3% to 21.3%. The results show that the Dak Mi River and Truong River basins 

315 were significantly altered in both scenarios, with the remaining sub-basins slightly increasing in the Vu Gia 

316 sub-basins and decreasing in the Thu Bon sub-basins (Fig. 10b, 10c).

317 5. Discussion

318 5.1. Effects of Quang Hue River on downstream streamflow 

319 Flow alteration in the VGTB basin is caused by reservoir operation and water transfer from the Quang 

320 Hue River (Fig. 5, 6, 7, and 8, Tables 4 and 5). Surveys and measurements from 2001 show that about 43% 

321 of Vu Gia's flow is diverted to the Thu Bon River by the Quang Hue River. We found that the water diverted 

322 to the Thu Bon River is governed and reduced by the cascading hydropower dams. The operation of 11 

323 reservoirs partially compensates for water in the Vu Gia sub-basins that the Dak Mi 4 plant has transferred 

324 (Fig. 11, Table 7). The annual flow decreased from 141 m3/s to 121.3 m3/s in the without-dam scenario 

325 compared with-dam scenario. Therefore, the reservoirs partially compensate for the water in the Vu Gia 

326 sub-basins that the Dak Mi 4 plant has transferred.
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327 5.2. Temporal variability in the relationships between rainfall and streamflow at sub-basins

328 Among the essential components of the basin's water budget, precipitation and runoff are closely related 

329 and interrelated through the water balance equation (Rose & Stern, 1965; Shawul et al., 2013). The duration 

330 and intensity of runoff are fundamentally dependent on precipitation and basin-wide infrastructure  (Ahn & 

331 Merwade, 2014; Ribbe et al., 2017). Most hydropower plants return water to the original river, except Dak 

332 Mi 4, which diverts water from the Vu Gia River to the Thu Bon River through the Truong River to increase 

333 the generated electricity efficiency. Therefore, the correlation curve of cumulative rainfall and streamflow 

334 tended to decrease in the Dak Mi River and increase in the Truong River between 2011 and 2020 (Fig. 12). 

335 In the other eight sub-basins, where there is no dam, rainfall is highly correlated with streamflow. However, 

336 there is a weak correlation in sub-basins with dams, indicating the obvious effect of dams on streamflow.

337 We found that the rainfall in the post-2010 period in the Dak Mi River and Truong River sub-basins 

338 increased compared to that in the pre-2010 period by 5.8% and 3.6%, respectively (Table 8). However, the 

339 average streamflow in the Dak Mi River decreased by 34%, from 97.7 m3/s to 64.5 m3/s. On the other hand, 

340 in the Truong River, average streamflow increased from 31.5 m3/s to 76.6 m3/s (143.4%). Reducing the Vu 

341 Gia streamflow leads to an increasing saltwater intrusion hazard/risk and strongly impairs local socio-

342 economic factors, especially agricultural production and drinking water supply.

343 5.3. Managing the risk of saltwater intrusion and water shortage downstream to enable sustainable 

344 development of the VGTB River basin

345 In situations where we could quantify the sub-basin contributions on the downstream reaches at different 

346 stations, we correlated the contribution of each dam group in the different sub-basins. In addition, we found 

347 that reservoirs with ample active storage (A Vuong, Song Bung 4, Dak Mi 4, Song Tranh 2) have contributed 

348 to the reduction of the wet season effects, which could help the government mitigate floods. Finally, we 

349 discuss the implications for agriculture, drinking water supply, and the mitigation of saltwater intrusion.

350 From 2011 to 2020, the Vuong sub-basin contributed the largest streamflow (30.9%) to the Vu Gia River 

351 (Fig. 10c, Table 6). During the dry season, the streamflow and water level downstream mainly depend on 
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352 the operation of the hydropower plants in this sub-basin. The outflow from the A Vuong and Song Bung 4 

353 hydropower plants flow into the Song Bung 5 and 6 reservoirs. Both reservoirs are regulated daily (can store 

354 flow in one day and only generate electricity during peak hours; in the evening and early morning) (Fig. 1a, 

355 Table 2). Therefore, although the flow from the electricity generation of Song Bung 5 and 6 is substantial, 

356 it is generated in a short time, leading to a small downstream flow the rest of the time. A low water level 

357 downstream affects pumping stations and plants for agriculture and drinking water supply. Moreover, the 

358 outlet of the VGTB basin has a semi-diurnal tidal regime, up and down twice a day, with a tidal amplitude 

359 is about 0.6m. Therefore, the downstream flow is frequently affected by saline water intrusion during the 

360 dry season. 

361 These problems require appropriate solutions, not only in the short term but also in the long term. 

362 Hydrology simulation and consultation with local experts can offer a range of measures to cope with water 

363 shortages for agriculture and drinking water supply and saltwater intrusion. The most important measures 

364 are redistributing upstream streamflow and ensuring minimal river streamflow from cascading hydropower 

365 dams in sub-basins. Specifically, coordination between reservoirs to maintain continuous downstream flow, 

366 combined with retained, upgraded water use works and reduced water transfer in the Quang Hue River, are 

367 suitable measures.

368 6. Conclusion and Recommendation

369 In this study, we used the semi-distributed hydrological model SWAT to clarify the impact of hydraulic 

370 infrastructures on the streamflow of the VGTB River basin from 1979 to 2020. The modelling results show 

371 that the Dak Mi 4 reservoir has the most significant influence on the streamflow of the Vu Gia and Thu Bon 

372 sub-basins. The overall impact of all reservoirs and water diversions on downstream flow decreased by 

373 1.1% in the Vu Gia sub-basins and increased by 20.6% in the Thu Bon sub-basins in the dry season. On the 

374 other hand, the streamflow in the rainy season decreased in the two basins by 23% and 2.6%, respectively, 

375 compared to the scenario without-dam. 
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376 Owing to water transfers from the Dak Mi 4 plant, the dry season, rainy season, and annual streamflows 

377 significantly decreased in the Dak Mi River sub-basin and increased in the Truong River sub-basin. We 

378 found that the water diverted to the Thu Bon River is governed and decreased by the cascading hydropower 

379 dams. The annual streamflow of Quang Hue River decreased from 141 m3/s to 121.3 m3/s in the without-

380 dam scenario compared with the with-dam scenario. The operation of the 11 reservoirs partially 

381 compensates for water in the Vu Gia sub-basins transferred by the Dak Mi 4 plant.

382 The Dak Mi River and Tranh River sub-basins contributed the largest streamflow for the Vu Gia and 

383 Thu Bon sub-basins in the 1980–2010 period by 32.9% and 54.6%, respectively. However, in the with-dam 

384 period (2011–2020), the contribution rate of the Dak Mi River was only 22.9%. On the other hand, the 

385 Truong River Basin increased the contribution of the Thu Bon sub-basins from 10.3% to 21.3%.

386 The bathymetry change caused the water transfer rate to increase. It was driven by a decrease in 

387 downstream water levels of the Vu Gia sub-basins, affecting water supply and increasing the risk of 

388 saltwater intrusion. Saltwater intrusion-induced water shortages during drought periods are the main 

389 constraints hindering domestic water supply and agricultural production. Under the impact of climate 

390 change and sea-level rise, it is predicted that saltwater intrusion in the downstream VGTB basin will worsen 

391 in both frequency and magnitude during the dry season. Therefore, there should be a mechanism for 

392 cooperation between institutions participating in water resource management. It is necessary to have 

393 appropriate operating procedures between upstream reservoirs, water supply plants, and irrigation 

394 companies, combined with maintained and upgraded water-use works.

395 Acknowledgments

396 This work was funded by APN ‘Asia-Pacific Network for Global Change Research’ under project reference 

397 number CRRP2020-09MYKantoush (Funder ID: https://doi.org/10.13039/100005536).

398 Conflict of Interest Statement

399 The authors declare no conflicts of interest.

400

Page 17 of 36

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://doi.org/10.13039/100005536


For Peer Review

Impact of hydraulic infrastructures and contribution of the sub-basins

401 Data availability statement

402 The data that support the findings of this study are available upon reasonable request from the corresponding 

403 author. The data are not publicly available due to privacy or ethical restrictions.

404 References

405 Abbaspour, K. C. (2013). Swat-cup 2012. SWAT Calibration and Uncertainty Program—a User Manual.

406 Ahn, K.-H., & Merwade, V. (2014). Quantifying the relative impact of climate and human activities on 

407 streamflow. Journal of Hydrology, 515, 257–266.

408 Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and 

409 assessment part I: model development 1. JAWRA Journal of the American Water Resources 

410 Association, 34(1), 73–89.

411 Carvalho-Santos, C., Monteiro, A. T., Azevedo, J. C., Honrado, J. P., & Nunes, J. P. (2017). Climate change 

412 impacts on water resources and reservoir management: uncertainty and adaptation for a mountain 

413 catchment in northeast Portugal. Water Resources Management, 31(11), 3355–3370.

414 Chhuon, K., Herrera, E., & Nadaoka, K. (2016). Application of integrated hydrologic and river basin 

415 management modeling for the optimal development of a multi-purpose reservoir project. Water 

416 Resources Management, 30(9), 3143–3157.

417 Di Baldassarre, G., Wanders, N., AghaKouchak, A., Kuil, L., Rangecroft, S., Veldkamp, T. I. E., Garcia, 

418 M., van Oel, P. R., Breinl, K., & Van Loon, A. F. (2018). Water shortages worsened by reservoir 

419 effects. Nature Sustainability, 1(11), 617–622.

420 Firoz, A. B. M., Nauditt, A., Fink, M., & Ribbe, L. (2018). Quantifying human impacts on hydrological 

421 drought using a combined modelling approach in a tropical river basin in central Vietnam. Hydrology 

422 and Earth System Sciences, 22(1), 547–565.

423 Government of Vietnam. (2019). Decision 1867/QĐ-TTg: Procedures for operating reservoirs system in 

424 Vu Gia Thu Bon river basin (in Vietnamese).

425 Hu, Z., Wang, L., Wang, Z., Hong, Y., & Zheng, H. (2015). Quantitative assessment of climate and human 

426 impacts on surface water resources in a typical semi‐arid watershed in the middle reaches of the 

Page 18 of 36

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Impact of hydraulic infrastructures and contribution of the sub-basins

427 Yellow River from 1985 to 2006. International Journal of Climatology, 35(1), 97–113.

428 ICEM. (2008). Strategic Environmental Assessment of the Quang Nam Province Hydropower Plan for the 

429 Vu Gia-Thu Bon River Basin, Prepared for the ADB, MONRE, MOITT & EVN, Hanoi, Vietnam, 205 

430 pp.

431 Johnson, S. A., Stedinger, J. R., & Staschus, K. (1991). Heuristic operating policies for reservoir system 

432 simulation. Water Resources Research, 27(5), 673–685.

433 Keitzer, S. C., Ludsin, S. A., Sowa, S. P., Annis, G., Arnold, J. G., Daggupati, P., Froehlich, A. M., Herbert, 

434 M. E., Johnson, M.-V. V, & Sasson, A. M. (2016). Thinking outside of the lake: Can controls on 

435 nutrient inputs into Lake Erie benefit stream conservation in its watershed? Journal of Great Lakes 

436 Research, 42(6), 1322–1331.

437 Loi, N. K., Liem, N. D., Tu, L. H., Hong, N. T., Truong, C. D., Tram, V. N. Q., Nhat, T. T., Anh, T. N., & 

438 Jeong, J. (2019). Automated procedure of real-time flood forecasting in Vu Gia–Thu Bon river basin, 

439 Vietnam by integrating SWAT and HEC-RAS models. Journal of Water and Climate Change, 10(3), 

440 535–545.

441 MCRHMC. (n.d.). Mid-Central Regional Hydrometeorological Centre, Vietnam.

442 Mittal, N., Bhave, A. G., Mishra, A., & Singh, R. (2016). Impact of human intervention and climate change 

443 on natural flow regime. Water Resources Management, 30(2), 685–699.

444 MOIT. (2015). Decision for Hydropower Plant Operation: Technical Document, Ministry of Investment 

445 and Trade, Socialist Republic of Vietnam, 2015a.

446 Nauditt, A., Firoz, A. B. M., Trinh, V. Q., Fink, M., Stolpe, H., & Ribbe, L. (2017). Hydrological drought 

447 risk assessment in an anthropogenically impacted tropical catchment, Central Vietnam. In Land use 

448 and climate change interactions in central Vietnam (pp. 223–239). Springer.

449 NDPAC. (n.d.). Natural Disaster Prevention and Control of Quang Nam Province. http://pctt.quangnam.vn/

450 Ngo, L. A., Masih, I., Jiang, Y., & Douven, W. (2018). Impact of reservoir operation and climate change 

451 on the hydrological regime of the Sesan and Srepok Rivers in the Lower Mekong Basin. Climatic 

452 Change, 149(1), 107–119.

Page 19 of 36

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Impact of hydraulic infrastructures and contribution of the sub-basins

453 Nguyen, H. T., Duong, T. Q., Nguyen, L. D., Vo, T. Q. N., Tran, N. T., Dang, P. D. N., Nguyen, L. D., 

454 Dang, C. K., & Nguyen, L. K. (2020). Development of a spatial decision support system for real-time 

455 flood early warning in the Vu Gia-Thu Bon River Basin, Quang Nam Province, Vietnam. Sensors, 

456 20(6), 1667.

457 Nguyen, L. H., & Fukushi, K. (2019). Addressing Climate change in the water sector: The study of Run-of-

458 river Hydropower potential in Vu Gia-Thu Bon river basin of Vietnam. IOP Conference Series: Earth 

459 and Environmental Science, 266(1), 12014.

460 Nguyen, T. H. (2020). Optimal operation of multi-reservoir system for flood control. Application to the Vu 

461 Gia Thu Bon catchment, Vietnam.

462 Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 

463 1068–1072.

464 RETA. (2011). Investment, Managing water in Asia's river basins: Charting progress and facilitating - The 

465 Vu Gia-Thu Bon sub-basins.

466 Ribbe, L., Trinh, V. Q., Firoz, A. B. M., Nguyen, A. T., Nguyen, U., & Nauditt, A. (2017). Integrated River 

467 Basin Management in the Vu Gia Thu Bon sub-basins. In Land Use and Climate Change Interactions 

468 in Central Vietnam (pp. 153–170). Springer.

469 Rose, C. W., & Stern, W. R. (1965). The drainage component of the water balance equation. Soil Research, 

470 3(2), 95–100.

471 Shawul, A. A., Alamirew, T., & Dinka, M. O. (2013). Calibration and validation of SWAT model and 

472 estimation of water balance components of Shaya mountainous watershed, Southeastern Ethiopia. 

473 Hydrology and Earth System Sciences Discussions, 10(11), 13955–13978.

474 Shrestha, B., Maskey, S., Babel, M. S., van Griensven, A., & Uhlenbrook, S. (2018). Sediment related 

475 impacts of climate change and reservoir development in the Lower Mekong River Basin: a case study 

476 of the Nam Ou Basin, Lao PDR. Climatic Change, 149(1), 13–27.

477 Sorooshian, S., Hsu, K., Coppola, E., Tomassetti, B., Verdecchia, M., & Visconti, G. (2008). Hydrological 

478 modelling and the water cycle: coupling the atmospheric and hydrological models (Vol. 63). Springer 

Page 20 of 36

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Impact of hydraulic infrastructures and contribution of the sub-basins

479 Science & Business Media.

480 Souvignet, M., Laux, P., Freer, J., Cloke, H., Thinh, D. Q., Thuc, T., Cullmann, J., Nauditt, A., Flügel, W., 

481 & Kunstmann, H. (2014). Recent climatic trends and linkages to river discharge in Central Vietnam. 

482 Hydrological Processes, 28(4), 1587–1601.

483 Vale, M., & Holman, I. P. (2009). Understanding the hydrological functioning of a shallow lake system 

484 within a coastal karstic aquifer in Wales, UK. Journal of Hydrology, 376(1–2), 285–294.

485 Van Binh, D., Kantoush, S. A., Saber, M., Mai, N. P., Maskey, S., Phong, D. T., & Sumi, T. (2020). Long-

486 term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese 

487 Mekong Delta. Journal of Hydrology: Regional Studies, 32, 100742.

488 Van Binh, D., Kantoush, S., & Sumi, T. (2020). Changes to long-term discharge and sediment loads in the 

489 Vietnamese Mekong Delta caused by upstream dams. Geomorphology, 353, 107011.

490 Viet, T. Q. (2014). Estimating the impact of climate change induced saltwater intrusion on agriculture in 

491 estuaries-the case of Vu Gia Thu Bon. Ruhr-Universität Bochum, Vietnam.

492 Vu, M. T., Vo, N. D., Gourbesville, P., Raghavan, S. V, & Liong, S.-Y. (2017). Hydro-meteorological 

493 drought assessment under climate change impact over the Vu Gia–Thu Bon river basin, Vietnam. 

494 Hydrological Sciences Journal, 62(10), 1654–1668.

495 Wang, D., & Hejazi, M. (2011). Quantifying the relative contribution of the climate and direct human 

496 impacts on mean annual streamflow in the contiguous United States. Water Resources Research, 

497 47(10).

498 Wang, G., & Xia, J. (2010). Improvement of SWAT2000 modelling to assess the impact of dams and sluices 

499 on streamflow in the Huai River basin of China. Hydrological Processes: An International Journal, 

500 24(11), 1455–1471.

501 Wang, H., Chen, L., & Yu, X. (2016). Distinguishing human and climate influences on streamflow changes 

502 in Luan River basin in China. Catena, 136, 182–188.

503 Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower 

504 dam construction. Aquatic Sciences, 77(1), 161–170.

Page 21 of 36

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Impact of hydraulic infrastructures and contribution of the sub-basins

505 Zhang, Y., Zhai, X., & Zhao, T. (2018). Annual shifts of flow regime alteration: new insights from the 

506 Chaishitan Reservoir in China. Scientific Reports, 8(1), 1–11.

507 Zhou, T., Nijssen, B., Gao, H., & Lettenmaier, D. P. (2016). The contribution of reservoirs to global land 

508 surface water storage variations. Journal of Hydrometeorology, 17(1), 309–325.

509

Page 22 of 36

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table 1. Characteristics of sub-basins on Vu Gia and Thu Bon rivers

Basin Sub-basin Catchment area 
(Km2)

Percentage area, 
compared to 

Ai Nghia station 
(%)

Percentage area, 
compared to 

Giao Thuy station 
(%)

Reservoir

Con River 634.5 11.94 2
A Vuong River 769.4 14.48 3
Bung River 1462 27.52 4
Giang River 490.6 9.24 -

Vu 
Gia

Dak Mi River 1394 26.24 3
Khe Dien River 135.8 3.86 1
Que Lam River 131.9 3.75 -
Truong River 430.9 12.26 2
 Tranh River 1649 46.90 3

Thu 
Bon

Khang River 584.8 16.63 -
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Table 2. Profile of 18 hydropower dams in the VGTB River basin (Government of Vietnam, 2019; ICEM, 

2008; MOIT, 2015).

Name Catchment 
area

Dam 
high

Dead 
water 
level 

(DWL)

Normal 
water 
level 

(NWL)

Flood 
design 
water 
level 

(FWL)

Total 
storage

Active 
storage

Dead 
storage

Turbine 
dis-

charge

Capa-
city

First year 
of 

operation

Unit km2 m m m m 106 m3 106 m3 106 m3 m3/s MW year

A Vuong 682  80 340 380 382.2 343.55 266.48 77.07  78.4 210 2008

A Vuong 3 258.4 22.9 551.6 552.5 559.45 2.94 0.44 2.5 22.7 1.04 2016

Song Tranh 
2 1100 96 140 175 178.51 729.2 521.1 208.1 245 190 2011

Song Tranh 
3 1450 36.5 70.5 71.5 75.9 34.1 3.1 31 301.6 62 2013

Song Tranh 
4 1610 25 45.5 46.5 - 24.81 3.32 21.49 298 48 2020

Dak Mi 2 445 30 624 630 635.19 1.611 0.692 0.919 44.36 98 2019

Dak Mi 3 612 30 353 359 363.96 5 2.304 2.696 76 63 2017

Dak Mi 4 1125 90 240 258 260.33 312.38 158.26 154.12 128 148 2011

Dak Mi 4B 29 23.5 105 105.3 107.28 0.688 0.066 0.622 130 42 2012

Dak Mi 4C 82.6 11.5 66.2 67.2 68.86 2.67 0.52 2.15 140 18 2012

Song Bung 4 1448  114 205 222.5 228.11 510.8  233.99 276.81 166 156 2015

Song Bung 
4A 2276 46 95.4 97.4 99.95 10.6 1.58 9.02 166.4 49 2012

Song Bung 5 2369 41.5 58.5 60 64 20.27 2.45 17.82 239.24 57 2013

Song Bung 6 2386 39.2 31.8 31.8 45.89 3.29 0 3.29 239.8 29 2012

Za Hung 537 25 445 450 457.27 1.12 0.74 0.38 53.4 30 2009

Khe Dien 72 41 187.4 206.94 211.78 50.98 50.35 0.63 11.3 9 2007

Song Con 2 81 48 319 340 345.68 29.19 25.41 3.78 9.7 3 2009

An Diem 2 169.8 24.5 344 348.5 353.34 0.28 0.19 0.09 9 15.6 2010
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Table 3. Statistical indices in the calibration and validation of the streamflow at Thanh My and Nong Son.

Thanh My station Nong Son station
Statistical 

indices Calibrated
(1980–1995)

First  
Validated

(1996–2010)

Second 
validated 

(2011–2020)

Calibrated
(1980–1995)

First  
Validated

(1996–2010)

Second 
validated 

(2011–2020)

R 0.82 0.88 0.83 0.90 0.90 0.91

NSE 0.66 0.72 0.67 0.81 0.81 0.80

RSR 0.58 0.53 0.58 0.44 0.44 0.45

RMSE (m3/s) 119.61 142.12 105.30 214.28 305.29 246.79

PBIAS 3.76 -12.38 -32.89 2.28 1.83 -6.29

Table 4. Changes of streamflow at four stations in the period (2011–2020), compared with the without-

dam scenario.

Vu Gia sub-basins Thu Bon sub-basins
Changes

Thanh My Ai Nghia Nong Son Giao Thuy

Dry seasons -24.0 -1.2 57.8 54.9

Rainy seasons -79.6 -75.5 31.9 -21.6Changes in 
flow (m3/s)

Annual -42.5 -26.0 49.2 29.8

Dry seasons -25.5 -1.1 36.4 20.6

Rainy seasons -29.9 -23 5.8 -2.6Changes in 
flow (%)

Annual -28.1 -13.9 16.9 6.5

Table 5. Impact of each reservoir on seasonal and annual streamflow at Ai Nghia and Giao Thuy stations.

Ai Nghia Giao Thuy
Reservoir Dry season

(%)
Rainy season

(%)
Annual

(%)
Dry season

(%)
Rainy season

(%)
Annual

(%)
A Vuong 1 -1.4 -0.4 0.3 -0.4 -0.1

Song Bung 4 2 -4.2 -1.5 0.6 -1.4 -0.6

Dak Mi 4 -14.5 -17.4 -16.2 8.1 5 6.3

Song Tranh 2 - - - 8.1 -5.9 -0.6
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Table 6. Seasonal and annual flow characteristics of main sub-basins on Vu Gia and Thu Bon rivers.

Period (1980-2010) Period (2011-2020)
(Without-dam)

Period (2011-2020)
(With-dam)

Sub-
basins

Sub-
basin

Dry 
season 

(January 
- 

August)
(m3/s)

Rainy 
season 

(September 
- 

December)
(m3/s)

Annual 
(m3/s)

Dry season 
(January 

- 
August)
(m3/s)

Rainy 
season 

(September 
- 

December)
(m3/s)

Annual 
(m3/s)

Dry 
season 

(January 
- 

August)
(m3/s)

Rainy 
season 

(September 
- 

December)
(m3/s)

Annual 
(m3/s)

Con 
River 12.5 55.4 26.8 14.9 64.1 31.3 18.1 61.8 32.7

A Vuong 
River 15.1 74.9 35.0 19.7 76.7 38.7 22.3 70.0 38.2

Bung 
River 36.1 166.6 79.6 49.4 163.8 87.5 53.7 154.4 87.3

Giang 
River 15.7 69.1 33.5 21.9 66.0 36.6 21.9 66.0 36.6

Dak Mi 
River 44.8 203.5 97.7 63.8 193.6 107.1 40.2 113.0 64.5

Vu Gia

Ai Nghia 121.6 431.0 224.7 116.1 328.5 186.9 114.9 253.0 160.9

Khe Dien 
River 3.8 16.9 8.1 4.0 16.4 8.1 4.5 15.7 8.2

Que Lam 
River 4.4 20.1 9.7 4.6 18.8 9.4 4.6 18.8 9.4

Truong 
River 13.1 68.2 31.5 16.1 62.7 31.7 49.9 130.1 76.6

Tranh 
River 80.9 336.6 166.1 89.8 335.2 171.6 114.4 298.6 175.8

Khang 
River 23.6 102.9 50.0 27.5 104.2 53.1 27.5 104.2 53.1

Thu 
Bon

Giao 
Thuy 198.4 734.2 377.0 265.9 825.0 452.2 320.7 803.4 481.6
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Table 7. Dry season, rainy season, and annual average streamflow in without-dam and with-dam scenarios.

QH

Scenarios AN1
(m3/s)

AN2
(m3/s)

GT1
(m3/s)

GT2
(m3/s) Streamflow

(m3/s)

Percentage of 
Thu Bon River 

(%)
Dry season 203.3 115.9 177.8 265.2 87.4 33

Rainy season 576.8 328.8 577.6 825.6 248.0 30Without 
dams

Annual 328.0 187.0 311.3 452.3 141.0 31.2

Dry season 200.9 114.5 233.5 319.9 86.4 27

Rainy season 444.3 253.2 613.4 804.4 191.0 23.8With 
dams

Annual 282.1 160.8 360.4 481.7 121.3 25.2

Table 8. Changes in rainfall and average streamflow on Dak Mi River, Truong River.

River Period Rainfall (mm) ∆P Flow (m3/s) ∆Q

Pre-2010 3347 97.7
Dak Mi

Post-2010 3540 193 (5.8%) 64.5 -33.23 (-34%)

Pre-2010 3493 31.5
Truong

Post-2010 3620 127 (3.6%) 76.6 45.15 (143.4%)
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Figure 1. (a) Spatial coverage of the VGTB River basin. Locations of meteorological and hydrological 

stations and dams. (b) Land use map and (c) Soil map collected from the Lucci project.

Figure 2. (a) Sub-basins and spatial variations of the rainfall from 1979 to 2020 in the VGTB basin. Data 

interpolated from 15 rain gauges according to the Kriging method on ArcGIS 10.4. (b) Average monthly 

rainfall, minimum temperature, average temperature, and maximum temperature of the VGTB basin. 
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Figure 3. Calibrated and validated hydrographs of the streamflow at (a) the Thanh My station and (b) the 

Nong Son station; calibrated (1980–1995), first validated (1996–2010), second validated (2011–2020). 

Outflow calibration of reservoirs from 2017 to 2020 at (c) A Vuong, (d) Song Bung 4, (e) Dak Mi 4, (f) 

Song Tranh 2. 
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Figure 4. (a) Mean monthly streamflow at the four stations simulated with SWAT model in the period 1980–

2020. (b) Box plots showing the 25th, 50th (median), and 75th percentiles of the daily (se1r)Fuk time 

series.  Thanh My and Ai Nghia are in the Vu Gia River, and Nong Son and Giao Thuy are in the Thu Bon 

River. The whiskers are defined as the first quartile minus 1:5 × inter-quartile range (IQR), and the third 

quartile plus 1:5 × IQR.
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Figure 5. Daily streamflow at four stations. (a) Without-dam scenario, (b) with-dam scenario, (c) the ratio 

of difference in streamflow between with-dam and without-dam scenarios. The x-axis shows the Julian date, 

and the y-axis shows the year.
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Figure 6. Average monthly streamflow at four stations in the 2011–2020 period, (a) Thanh My, (b) Nong 

Son, (c) Ai Nghia, and (d) Giao Thuy stations. The black line is the without-dam scenario, and the red line 

is the with-dam scenario.
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Figure 7. Comparison (se1r)Fuk for the years 2011 to 2020. (a) Dry season (January to August), (b) Rainy 

season (September to December), (c) Annual. The grey colour is the without-dam scenario, and the red 

colour is the with-dam scenario.
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Figure 9. Box plots indicate the 25th, 50th (median), and 75th percentiles of the daily (se1r)Fuk of main 
sub-basins in Vu Gia and Thu Bon sub-basins in the 2011–2020 period, (a) Without-dam scenario. (b) With-
dam scenario.
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Figure 10. Percentage contribution of streamflow of sub-basins on Vu Gia and Thu Bon sub-basins, (a) 

1980–2010 period, (b) 2011–2020 period without-dam, (c) 2011–2020 period with-dam. The results only 

consider water transfer of the Dak Mi 4 plant in the with-dam scenario and do not consider the Quang Hue 

River in all scenarios. The percentage contribution considers the upper Quang Hue River in Vu Gia and Thu 

Bon Rivers.

Figure 11. Five streamflow extraction locations on Vu Gia River, Thu Bon River, and Quang Hue River 

(AN1, AN2, GT1, GT2, QH).
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Figure 12. Correlation curves showing relationship of cumulative rainfall and streamflow at sub-basins. (a) 

Con River, (b) A Vuong River, (c) Bung River, (d) Giang River, (e) Dak Mi River, (f) Khe Dien River, (g) 

Que Lam River, (h) Truong River, (i) Tranh River, (k) Khang River.

Page 36 of 36

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



1 
 

Machine learning techniques and 2D rainfall-runoff inundation model for 

flood susceptibility and extent mapping 

Mohamed Sabera*, Tayeb Boulmaizb, Mawloud Guermouic, Karim I. 

Abdrabod,e, Sameh A. Kantousha, Tetsuya Sumia, Hamouda Boutaghanef, 

Tomoharu Horia, Doan Van Binhg, Binh Quang Nguyena,h, Thao T. P. Buia, 

Ngoc Duong Voh, Emad Habibi, Emad Mabroukj,k 

aDisaster Prevention Research Institute (DPRI), Kyoto University, Kyoto 611-0011, Japan.   

bMaterials, Energy Systems Technology and Environment Laboratory, Ghardaia 

University, Ghardaia, Algeria 

cUnité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de 

Développement des Energies Renouvelables, CDER, 47133 Ghardaïa, Algeria.  

dFaculty of Urban and Regional Planning, Cairo University, Giza 12613, Egypt 
eDepartment of Urban Management, Graduate School of Engineering, Kyoto University, 

Kyoto 615-8245 Japan.   

fHydraulic Department, Badji Mokhtar-Annaba University, PO Box 12, Annaba, Algeria.  

gMaster Program in Water Technology, Reuse, and Management, Faculty of Engineering, 

Vietnamese German University, 2-Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh 

Duong Province 820000, Vietnam. 

h The University of Danang -University of Science and Technology, 54 Nguyen Luong 

Bang, Danang, Vietnam. 

iUniversity of Louisiana at Lafayette, P.O. Box 42291, Lafayette, LA 70504, USA.  

 

mailto:m.karim.ibrahim@cu.edu.eg
mailto:m.karim.ibrahim@cu.edu.eg
mailto:m.karim.ibrahim@cu.edu.eg


2 
 

jCollege of Engineering and Technology, American University of the Middle East, Egaila 

54200, Kuwait.  

kDepartment of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt. 

*Corresponding: mohamedmd.saber.3u@kyoto-u.ac.jp 

Abstract 

Vietnam has experienced many natural disasters, particularly typhoons. This study aims to 

examine three machine learning (ML) techniques random forest (RF), LightGBM, and 

CatBoost—for flooding susceptibility maps (FSMs) in the Vietnamese Vu Gia-Thu Bon 

(VGTB). The results of ML are compared with those of the rainfall-runoff model, and 

different training dataset sizes are utilized in the performance assessment. Ten independent 

factors that influence the FSMs in the study area, namely, aspect, rainfall, curvature, DEM, 

horizontal proximity to the river, hillshade, geology land use, slope, and stream power index, 

are assessed. An inventory map with approximately 850 flooding sites is based on several 

post-flood surveys after the typhoons in 1999, 2006, 2007, 2009, 2013, and 2020. The 

inventory dataset is randomly split between training (70%) and testing (30%). The AUC-

ROC results are 97.9%, 99.5%, 99.5% for CatBoost, LightGBM, and RF, respectively. The 

FSMs developed by the ML methods show good agreement in terms of an extension with 

flood inundation maps developed using the rainfall-runoff model. The FSMs show that 

downstream areas (both urbanized and agricultural) are under high and very high levels of 

susceptibility. Additionally, different sizes of the input datasets (i.e., 30, 60, 90, 200, 400, 

600, 800, 1000, and 1250 data points) are tested to determine the least number of data points 

mailto:mohamedmd.saber.3u@kyoto-u.ac.jp
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having acceptable reliability. The results demonstrate that the ML methods can realistically 

predict FSMs, regardless of the number of training samples. However, the final FSMs show 

some spatial differences when changes in susceptibility level are seen. Decision-makers and 

planners in Vietnam can use the developed FSMs for such typhoon-prone regions to propose 

effective mitigation measures for community resilience and development. 

Keywords: Machine learning; random forest; LightGBM; CatBoost; flood 

susceptibility mapping; rainfall-runoff inundation model. 

 

1.  Introduction 

        Floods are the greatest catastrophic natural disaster on a global scale. Because of their 

short lag times, flash floods are more devastating than other types of flooding (Vinet 2008; 

Bui, Ngo, et al. 2019; Abdrabo, Kantosh, et al. 2022). Flash floods have had disastrous 

consequences in high and low-income countries (Bisht et al. 2018; Esmaiel et al. 2022). 

However, floods are more destructive in developing countries like Vietnam. Extreme 

fluctuations in storm patterns and global climate change are the main causes of the reported 

rise in flash floods (Hirabayashi et al. 2013; Pachauri et al. 2014; Abdrabo, Saber, et al. 2022; 

Saber et al. 2022). Typhoons, Tropical cyclones, extended coastal areas, and dense river 

networks are the primary causes of severe flooding in Vietnam. It is also highly vulnerable 

to floods caused by extreme storms. Vietnam is rated eighth among the top ten countries in 

weather events (Thao et al. 2020), where densely populated areas are more vulnerable to 
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floods. Consequently, continuous risk in human life and assets will always exist (Luu et al. 

2021). Flash flood mitigation for risk reduction and management requires efficient 

monitoring measures (Arora et al. 2020). Food susceptibility mapping is critical for scientists 

and governments worldwide to maintain the cities and human settlements  safe, and resilient 

(Ali et al. 2020; Osman et al. 2021).  

Several studies have been performed to forecast the likelihood of flood events. These studies 

can be divided into rainfall-runoff analysis, conventional analysis, and pattern categorization 

(Tien Bui and Hoang 2017). The traditional analysis uses time-series data for an extended 

period obtained from rainfall stations to produce regression models. The rainfall-runoff 

models (e.g., MIKE, PCSWMM 2D, HEC-RAS, etc.) concentrate on determining the 

correlation between runoff and rainfall to calculate temporal and spatial floods (Nguyen et 

al. 2015). In general, this task is complicated because of difficulties in accessing affected 

areas, especially in developing countries; as a result, the hydrological models' performance 

may be compromised, and comprehensive observational datasets are needed for calibration 

and validation of models (Abushandi and Merkel 2011; Abdrabo et al. 2020). Both groups 

have a significant deficiency: the lack of required data frequently limits their applications 

and incurs substantial costs for data collection (Fenicia et al. 2014). The last group, on the 

other hand (pattern classification), uses machine learning (ML) models that utilize historical 

geological, environmental, and flood data. Accordingly, flood-prone areas are defined as 

flood and non-flood classes (Bui, Ngo, et al. 2019). However, comparative studies and 

integration between these groups are lacking (Hsu et al. 1995; Demirel et al. 2009; Humphrey 

et al. 2016; Kratzert et al. 2019; Yang et al. 2020).   
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Over the last 20 years, the application of ML methods for flood susceptibility forecasting has 

been extensively evaluated globally. As a result, the recent advancement of ML methods has 

significantly improved flood modeling. Because of the ability of ML techniques to capture 

information without making predetermined assumptions, process complex datasets, and 

promptly provide high accuracy and reliable results, such practices have become widespread 

(Costache, Popa, et al. 2020; Arabameri et al. 2020). Several articles have been employed 

using GIS techniques and remote sensing to develop reliable flooding susceptibility maps 

(FSMs). ML models are currently associated with GIS to address various hydrological and 

environmental issues (Akay and Taş 2020). Logistic regression (LR), support vector 

machines (SVMs), Artificial neural networks (ANNs), adaptive neuro-fuzzy inference 

system (ANFIS), and random forest (RF) models are the most utilized in ML for FSM (Arora 

et al., 2020; Shahabi et al., 2020; (Hong et al. 2018; Costache, Hong, et al. 2020); Darabi et 

al., 2019; Shirzadi et al., 2020; Choubin et al., 2019; Dodangeh et al., 2020). Several 

ensemble methods to predict FFS have been used (Shahabi et al. 2020). ML methods consist 

of multiple stages (Arora et al. 2020), including the preparation of the inventory and 

influencing factors, as well as the assessment of the accuracy of the ML model. However, 

few studies have discussed the effect of inventory dataset size on the results’ accuracy (Catal 

and Diri 2009; Tiwari and Chatterjee 2010; Meadows and Wilson 2021). 

Ensemble and hybrid ML models have recently appeared, outperforming single models in 

their accuracy prediction (Zenggang et al., 2021). Several ensemble ML techniques, such as 

the alternating decision tree, bagging, dagging, reduced-error pruning tree, naïve Bayes tree, 

logistic model tree, AdaBoost, J48 decision tree, and random subspace ensembles have been 
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applied to enhance the predictive accuracy of the FSM (Pham, Jaafari, et al. 2021; Tuyen et 

al. 2021; Luu et al. 2021). Several studies have developed flooding susceptibility maps in 

Vietnam using ML, which can be classified into three groups. The first evaluates the 

utilization of new ML models and their ability to detect areas prone to floods. For instance, 

the AdaBoost, dagging, bagging, and random subspace ensemble learning methods were 

combined with the Partial Decision Tree (PART) classifier to develop new GIS-based 

ensemble methods for FSM in the Province of Quang Binh (Luu et al. 2021). The second 

group attempts to overcome the limitations in the studies number that utilize remote sensing 

data to generate input variables for FSM despite the merits of using such available data (Pham 

et al. 2019, p. 2010–2018). As such, (V.-N. Nguyen et al. 2020; Dhara et al. 2020; Nhu et al. 

2020, p. 202; Ngo et al. 2021) suggested a hybrid approach using remotely sensed data with 

ML models for flooding susceptibility. The third group introduced a novel deep learning 

neural network (DLNN) algorithm for FSM (Tien Bui et al. 2020), integrating particle swarm 

optimization (PSO) and extreme learning machines (ELMs) (Bui, Ngo, et al. 2019; Bui et al. 

2020) along with a comparison between ML and deep learning techniques (Pham, Luu, et al. 

2021) for the same study area.  

In the presnt study, we examined two ML models, the light gradient boosting machine 

(LightGBM) and categorical boosting (CatBoost) for FSM for the first time in humid regions 

after successful application in arid areas (Saber et al. 2021). Previously, both methods have 

been applied some applications. LightGBM, for example, has been employed in some 

previous studies due to its accuracy in predictions and short computational time, in addition 

to exceptional prevention of overfitting problems. Accordingly, our primary objectives are 
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(1) to evaluate how practical the two ML approaches (CatBoost and LightGBM) are for 

predicting flooding susceptibility in humid environments (Vu Gia-Thu Bon basin in 

Vietnam); (2) to compare the results of the used two models with that of the conventional RF 

method ; (3) to test the effect of the inventory datasets (number of points) on the accuracy of 

the results in the study area;  and (4) to compare the rainfall-runoff inundation (RRI) 2D 

hydrological model with the proposed ML integrated models in terms of flood extent. 

2. Study Area 

     The River Basin of Vu Gia-Thu Bon (VGTB) (Fig. 1) is one of the major river basins in 

Vietnam, with a surface area of 10350 km2 (RETA 2011). The land use types in the basin 

are forest (47%), agriculture (26%), and pasture (20%) (Avitabile et al. 2016). The climate 

in this basin is tropical monsoon, with two seasons: dry summer (January-August) and wet 

(September-December).  The basin’s topographic features are hilly mountainous areas, with 

approximately 60% of the basin having an elevation of over 552 m. The average annual 

rainfall varies significantly, from 2000 mm in the downstream regions to more than 4000 

mm in mountainous areas. There are seasonal differences, with 65% to 80% of the annual 

rainfall concentrated between September and December (RETA 2011). The rain in eight 

months of the dry season is only 20%–35% of the annual rainfall (Nauditt et al. 2017). Due 

to rainfall's spatial distribution, the VGTB basin's runoff varies substantially across seasons.  

River flow in this period accounts for around 62.5% to 69.2% of the total annual flow. The 

impacts of both heavy rainfall and steep terrain usually lead to flash flooding. Approximately 

4–8 floods occur annually. Due to meteorological patterns such as tropical depressions, 
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typhoons,  and cold air, the highest flood peak occurs in October and November (Vu et al. 

2011). According to the Quang Nam Province Commanding Committee for Disaster 

Prevention, Search and Rescue report, the number of fatalities and property losses caused by 

floods and storms has been growing, particularly in 2020 (Fig. 2). 

There are two main sub-basins in the VGTB river system: Thu Bon Basin and the Vu Gia 

Basin. The Quang Hue River connects both Rivers. The Vu Gia River start from the western 

slope of Kon Tum and flows towards the province of Quang Nam and the city of Danang. It 

connects with the sea at the Cua Han estuary. The length of the main river from the source 

to the Cua Han estuary is 204 km. At the same time, the Thu Bon River originates from a 

mountain of 1500 m in Kon Tum province. The river length from the source to the Cua Dai 

estuary is 198 km.                     

Fig. 1. 

Fig. 2. 



3. Methodology 

This study's methodology comprises multiple phases, as shown in the flowchart in Fig. 3. 

This methodology has two main parts. First, a flood inventory map is created using 850 

flooded spots. These spots were determined primarily through post-flood assessments 

conducted after typhoons in 1999, 2006, 2007, 2009, 2013, and 2020. Non-flooded points 

(850) over the catchment were randomly selected using GIS tools. Additionally, Ten 
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commonly used independent flood susceptibility variables (FSFs) covering hydrological, 

topographical, geological, and landform characteristics were considered for modeling. The 

flooding susceptibility influencing factors, namely elevation, aspect, slope, hillshade, 

horizontal flow distance, plan curvature, stream power index (SPI), geology, land use/land 

cover, and rainfall were used to define the linear relationship with other variables. In 

subsequent phases, the data was divided into two sets using a random selection scheme: (70 

percent) for training and (30 percent) for testing. ArcGIS was used to create spatial maps for 

each flooding susceptibility factor while keeping spatial resolution consistency in mind. 

Following that, two approaches, the variance inflation factor (VIF) and the information gain 

ratio (IGR) were used to investigate the significance of the influencing factors in flooding 

susceptibility. The ML algorithms RF, CatBoost, and LightGBM were then implemented. 

The accuracy of the ML models' final results was assessed using various statistical processes, 

including the most dominant area under the curve (AUC).  Moreover, as we have very high-

quality observational flood locations, we tested the models to check the different sizes of the 

training datasets (Fig. 3). The final FSM developed by the ML models was then compared 

with the flood inundation maps from the 2D physical hydrological model regarding the flood 

extent.  

Fig. 3.  

3.1. Datasets 

3.2. Flooding inventory datasets 
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The initial stage in flood susceptibility mapping identifies flood locations (points)  based on 

prior flood records using several sources, such as field surveys, remote sensing data, and 

flood forecasting records (Tehrany et al. 2014; Wang et al. 2019; Esfandiari et al. 2020; Band 

et al. 2020).  The locations of future hazardous events might be forecasted using previous 

information (Devkota et al. 2013; Tehrany and Kumar 2018). As a result, the fundamental 

phase of flood susceptibility study is an examination of prior historical flood occurrences and 

their contributing elements (Masood and Takeuchi 2012). The accuracy in selecting flood 

points is reflected in the model accuracy for FSM (Tehrany et al. 2013; Arora et al. 2019).  

In this study, 1700 ground control points (Fig. 1) were identified for flooded (850) and non-

flooded points (850). Approximately 1250 were used for training and 450 for testing the 

models. The flooded locations were compiled from historical flood records and post-flood 

field surveys in 1999, 2006, 2007, 2009, 2013, and 2020 (Fig. 1). Flood and non-flood 

locations were assigned values 1 and 0, respectively. Using the random selection approach, 

the points were divided into 70% for training to create the flooding prediction model and 

30% for testing the model performance and generalization abilities.  

3.3. Spatial datasets (flood controlling parameters) 

Identifying flood governing parameters for flooding susceptibility mapping is critical and 

influences model accuracy (Kia et al. 2012). Runoff in a drainage system is influenced by 

the watershed features, terrain, catchment area, land use types, and land cover during floods. 

(Hölting and Coldewey 2019). Generally, there are no uniform and standard selection criteria 

for FSM controlling factors. Depending on previous research and the features of the studied 
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area, as well as the availability of data, we were able to develop ten flood governing indicators 

that include topographic, geological, hydrological, and landform factors. The ten indicators 

are plan curvature, elevation, slope, aspect, horizontal flow distance, hillshade, SPI, rainfall, 

geology, and land use/land cover. Using ArcGIS, the data were developed in raster formats 

(Fig. 4). All topographic factors were constructed based on the spatial analysis of MERIT 

digital elevation model (Yamazaki et al. 2017). The terrain elevation's spatial resolution was 

3 s (~90 m at the equator). It was created by removing the incorrect components from existing 

digital elevation models (DEMs), such as Aw3D-30m v1 and SRTM3 v2.1. These data are 

freely available and accessible at http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/. 

Below are the details of this study's considered flood influencing parameters.  

 Elevation: According to (Tehrany et al. 2013), there is a clear correlation between 

elevation and flooding, which makes lowland surfaces more susceptible to flooding than 

higher ones (Khosravi et al. 2016). This implies that the likelihood of flooding decreases with 

increasing topographic elevation (Youssef et al. 2016). The research area contains 

complicated topography characteristics, including very high elevations up to 2600 m and low 

altitudes ranging from 3 m to 200 m in the downstream section of the basin and the coastline 

area, primarily residential and agricultural areas (Fig. 4a).  

 Slope: This is a significant factor influencing flooding (Khosravi et al. 2016; Tien 

Bui et al. 2016; Meraj et al. 2018) because of its effect on water velocity and surface flow 

(Torabi Haghighi et al. 2018). The study area's slope varied from 0° to 70° (Fig. 4b).  

http://hydro.iis.u-tokyo.ac.jp/%7Eyamadai/MERIT_DEM/


12 
 

 Aspect:  As stated by (Choubin et al. 2019), this aspect influences the hydrological 

parameters. There is an indirect relationship between the aspects of floods owing to their 

control over several geo-environmental factors, such as rainfall, vegetation, and soils 

(Rahmati et al. 2016). When aspects receive a low intensity of sunlight, which means more 

soil moisture, the moist slope will likely increase runoff, leading to increased flooding risk 

(Yariyan et al. 2020). The aspect raster map was categorized into ten classes from flat to 

northwest (Fig. 4c).  

 Plan Curvature: Many researchers consider this an essential flood controlling factor 

(Hong et al., 2018) and affects heterogeneity  and hyporheic (Cardenas et al. 2004). The 

different values of curvatures differentiate the areas of the faster runoff from those with a 

slower runoff. While negative values cause an increase in runoff, the positive values decrease 

it. The surface runoff is affected by the shape of slope, as zero curvature (flat) and negative 

curvature (concave) have more potential for flooding than the convex form (positive) 

(Tehrany et al. 2014; Tehrany et al. 2015; Shahabi et al. 2020). Concave slopes, for instance, 

slow surface flow and increase filtering losses, while convex slopes do precisely the opposite 

of concave slopes (Cao et al., 2016). The curvature map was developed based on the DEM 

with three forms (concave, flat, and convex), and the flat class was more dominant in the 

downstream area, as shown in Fig. 4d.  

 Hillshade: A hill’s length and shadow are intertwined with its hillshade or topshade, 

which may affect where the surface flow converges (Aryal et al. 2003). Prior research has 

shown minimal interest in topshade (Bui, Ngo, et al. 2019). Predicting flooding vulnerability 
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requires it after slope and elevation (Bui, Hoang, et al. 2019). Figure 4e shows that toposhade 

was chosen as a flood influencing factor. 

Fig. 4. 

 

     Flow distance: Any area's likelihood of flooding is influenced mainly by distance from 

major rivers or streams (Glenn et al. 2012). Typically, nearby streams are more vulnerable to 

floods (Chapi et al. 2017).  The farther away from rivers, the greater the chance of floods. 

Floods are common in places near rivers, which has been stressed as a primary influencing 

factor for flooding (Predick and Turner 2008); (Bui et al. 2018; Darabi et al. 2019). 

According to (Gigović et al. 2017; González-Arqueros et al. 2018), the distance from streams 

are the primary conduits for surface flow. Using ArcGIS, the horizontal flow distance was 

calculated for the current investigation using the flow direction, flow accumulation, and 

DEM (Fig. 4f.).                                 

 Rainfall: Precipitation is one of the triggering factors for flooding, as no rainfall 

indicates a lack of flooding. The total average rainfall was estimated between 2001 and 2019 

using the PERSIANN Dynamic Infrared–Rain rate model (PDIR). Estimating precipitation 

was done using remotely sensed information that utilizes ANNs (P. Nguyen et al. 2020, p.). 

It is a real time global dataset with a high resolution of approximately (0.04° × 0.04°, or 4 

km × 4 km, at (https://chrsdata.eng.uci.edu/). According to the geographical maps, the 

average annual precipitation in the upstream and mountainous parts is 3284 mm, while 2235 

mm in the downstream.  
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     Land use/land cover: The influence of this factor was confirmed using the global cover 

map developed by the geospatial Japan information authority  

(https://www.gsi.go.jp/kankyochiri/gm_global_e.html) and mainly from this website 

(https://globalmaps.github.io/glcnmo.html). Land use and land cover types were also 

considered as controlling factors due to their influence on filtration and runoff velocity. The 

study area has approximately six classes (Fig. 4h), including cropland, forest, grassland, other 

lands, settlement, and water. The forest is the dominant type of land cover in the mountainous 

area, especially upstream of the basins, and agricultural land and urban areas are located in 

the downstream region.   

 Stream Power Index:  This parameter indicates the power of erosion and discharges 

within a specific area of the river system (Poudyal et al., 2010). Several researchers have 

considered the SPI a flooding contributor because it indicates surface flow. The highest 

values of SPI imply a fast flow of downstream water, which reveals lower flooding 

susceptibility, and low values imply slow flow leading to more inundation (Tehrany and 

Kumar 2018). SPI was calculated based on a method derived from Jebur et al. (2014). SPI 

was classified into five classes in the presnt study area (Fig. 4i).  

 Geology: In terms of infiltration and flow velocity, this is a critical parameter. 

Lithology data was given by the Land Use and Climate Change Interaction in Central 

Vietnam (LUCCI) (Nauditt and Ribbe 2017). In terms of geological classification, it has been 

subdivided into several different kinds with high variation in sedimentary, igneous, and 

metamorphic rock types (Fig. 4k). 

https://www.gsi.go.jp/kankyochiri/gm_global_e.html
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3.4.      Selection of flood influencing factors 

The selection of controlling factors is a important stage in ML modeling for FSM. the 

estimated capabilities of the model may be impacted by an inaccurate selection of the 

hyperparameter values or redundancy (Öztürk and Akdeniz 2000). As a result, the feature 

selection procedure was based on Spearman's rank correlation, the IGR and the 

multicollinearity test to identify irrelevant features. 

3.4.1. Spearman’s correlation coefficient  

 The nonparametric Spearman rank correlation coefficient is used to show the strength 

of the monotonic association between two variables, X and Y. From -1 to 1, the coefficient 

indicates more significant and weaker correlations. As the coefficient value approaches 0, 

the relationship between the two variables X and Y becomes weaker. Correlation coefficient 

values higher than 0.7 imply considerable collinearity (Tien Bui et al. 2016). According to 

this formula, the correlation coefficient is calculated:  

𝒓𝒓(𝒙𝒙,𝒚𝒚) = 𝟏𝟏 −
𝟔𝟔∑(𝒙𝒙 − 𝒚𝒚)𝟐𝟐

𝒏𝒏(𝒏𝒏𝟐𝟐 − 𝟏𝟏)                                                                      (1)  

where 𝑟𝑟 refers to the correlation coefficient, 𝑥𝑥 and 𝑦𝑦 are defined as the two variables, and 𝑛𝑛 

is the length of each variable. 

3.4.2. Multicollinearity Test  

 Multicollinearity was examined between all contributing elements and the 

correlations between two characteristics using Spearman's coefficient. The VIF was used in 
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this study's multicollinearity analysis to identify any existing interrelatedness between 

variables. This element is frequently utilized in investigations of flood susceptibility(Bui et 

al. 2019; Khosravi et al. 2019; Rahman et al. 2019), suggesting a threshold > 5 to consider 

multicollinearity. The relevant predictors are, however, deemed collinear in other research if 

the VIF value is more than 10; hence it is advised to leave them out of the models (Dou et al. 

2019; Wang et al. 2019). Thus, we considered a value of five as the threshold for selection. 

The independent predictors are specified as X = {X1, X2,..., Xn} and 𝑅𝑅𝑗𝑗2 , and refer to the 

determination coefficient when the jth independent predictor Xj is regressed on the other 

predictors. The following equation is used to determine VIF: 

     𝑉𝑉𝑉𝑉𝑉𝑉 = 1
1−𝑅𝑅𝑗𝑗

2                                                                                           (2) 

3.4.3. Information gain ratio 

 Using the IGR test, conditioning factors were assessed to determine their relative 

relevance in the occurrence of floods (Quinlan 1986; Xu et al. 2013). The latter is one of the 

feature selection techniques that considered by many previous studies (Shahabi et al. 2020). 

When an input has zero IGR, there is no correlation between the input and the output. This 

circumstance suggests that including such input in the model will not provide any 

information; rather, it will create noise, reducing the model's capacity for prediction. 

Therefore, it is strongly advised that these elements be eliminated from the inputs. Eq. (3) is 

used to compute the IGR. 



17 
 

𝑰𝑰𝑰𝑰𝑰𝑰(𝒙𝒙,𝒁𝒁) =
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬(𝒁𝒁) − ∑ |𝒁𝒁𝒊𝒊|

|𝒁𝒁| 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬(𝒁𝒁𝒊𝒊)𝒏𝒏
𝒊𝒊=𝟏𝟏

∑ |𝒁𝒁𝒊𝒊|
|𝒁𝒁| 𝐥𝐥𝐥𝐥𝐥𝐥

|𝒁𝒁𝒊𝒊|
|𝒁𝒁|

𝒏𝒏
𝒊𝒊=𝟏𝟏

                    (𝟑𝟑) 

3.5. Machine learning methods  

ML approaches are the basic concept of employing algorithms to analyze and learn from the 

data to produce forecasting or classification systems. These techniques can be learned from 

previous experience or a given historical database. These methods can generalize the learning 

examples provided in the training phase to identify the main tasks that must be performed. 

Several ML algorithms have been developed. These techniques can be classified according 

to their learning mechanisms (i.e., supervised, unsupervised, and semi-supervised learning). 

The choice of a suitable ML model and training method depends on the problems to be solved 

or the available data and its types. In the current study, we focused on using supervised ML 

techniques for flooding susceptibility assessment. According to previous research, various 

ML techniques have been proposed recently to deal with flooding susceptibility assessment 

(i.e., SVMs, ELMs, ANNs, Gaussian process regression (GPR), and classification and 

regression trees (CART)). In addition, few studies have addressed flooding susceptibility 

using ensemble-learning approaches based on decision trees. These algorithms are based on 

boosting techniques that concentrate on misclassified data during the training phase. In this 

respect, the goal of this study is to assess the performance of two new modeling techniques, 

CatBoost and LightGBM, benchmarked with the conventional RF approach. 
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3.5.1. Random forest  

 RF models have proven efficiency when dealing with prediction and classification problems 

(Esfandiari et al. 2020; Schoppa et al. 2020). RF is an ensemble learning approach based on 

a decision tree model. It was developed by Breiman (2001), who combined bagging (Breiman 

2001) and random subspace (Ho 1998) techniques. This ML algorithm has proven to be 

reliable in many fields (Zahedi et al. 2018; Izquierdo-Verdiguier and Zurita-Milla 2020; 

Pourghasemi et al. 2020). In this study, we aimed to predict flood or non-flood regions 

according to several conditioning factors; therefore, the RF model was used as a classifier 

method.  

The weakness of decision trees is their sensitivity to training data, which may result in very 

different tree structures. In the RF method, the original training set is used to randomly 

generate several training sets, thereby allowing the creation of different trees (bagging 

method). The inputs of the decision trees have the same data size as the initial training, and 

because the data are randomly generated, the samples may be repeated two or more times. In 

addition, each tree in the RF is trained with a subset of features that allows the development 

of diversified trees that are not correlated. The final result (classification) was obtained by 

performing a majority voting method on each decision tree results (Pal 2005). 

Decision tree models are simple to use and easy to interpret; however, their performance is 

not always better than that of other classification methods (Malekipirbazari and Aksakalli 

2015). On the other hand, RF outperformed other ML algorithms, such as ANNs (Bachmair 

et al. 2017). 
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3.5.2. Light Gradient Boosting Machine 

Microsoft created the gradient boosting decision tree (GBDT) variation called LightGBM. 

(Ke et al. 2017). It uses a combination of weak learners to generate a robust model. The new 

variant includes algorithms such as histograms, leaf tree growth, gradient-based one-side 

sampling (GOSS), and exclusive feature bundling (EFB) ). 

In GBDT models, the presorted algorithm is commonly used for split operations. All possible 

split points are tested based on the information gain, which is a time-consuming operation to 

determine the optimal split. A new histogram algorithm was adopted in the LightGBM 

method. To reduce the time and complexity of the operation, the data are grouped into a 

histogram, and the split point is chosen based on it (Fig. 5). 

Fig. 5.  

In LightGBM, the decision tree growth strategy was changed by replacing the level-wise 

approach with the leafwise tree growth approach. When finding the best node to split, the 

former approach of the GBDT splits one level down, forming symmetric trees (Fig. 6). In 

LightGBM, only the leaves that reduced the maximum error were split (Fig. 6). Ge et al. 

(2019) recommended defining a maximum leaf-wise depth to avoid deep growth of trees and 

provoke overfitting of the model. 

Fig. 6.  

The LightGBM model also uses two algorithms (GOSS and EFB), making it faster than 

GBDT models while maintaining a high performance (Saber et al. 2021). 
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3.5.3. Categorical boosting  

The CatBoost model is another enhanced boosting decision-tree learning technique, which 

was proposed by (Dorogush et al. 2018). It employs a gradient boosting scheme to construct 

a regression model through adjusted estimation. Furthermore, various refinements were 

performed to minimize overfitting of the model. The gradient boosting model is a useful ML 

tool that has yielded accurate results in many disciplines, including environmental parameter 

estimation, geospatial ecosystem factor dispersion, and meteorological forecasting. The 

CatBoost model operates well in terms of categorical attributes. Typically, the absence of 

categorical characteristics increases the accuracy of the model. It is primarily dependent on 

the use of gradient boosting, which employs a binary-tree classification scheme. The 

following points outline the differences between CatBoost and the other boosting techniques.   

• A sophisticated method was incorporated to convert category characteristics into 

numerical information. As mentioned by (Prokhorenkova et al. 2017), target statistics 

are very effective for dealing with categorical attributes with minimal information 

errors. 

• CatBoost combines categorical variables to take advantage of the existing 

relationship between different parameters. 

• To reduce the overfitting problem and improve the classification performance, a 

symmetrical tree strategy is used. 

 

Let us suppose we have a dataset: 
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𝑫𝑫 = ��𝑿𝑿𝑱𝑱,𝒀𝒀𝑱𝑱��          𝑱𝑱 = 𝟏𝟏, . . . . . ,𝒎𝒎                               (𝟒𝟒)  

where 𝑋𝑋𝐽𝐽 = (𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2, . . . , 𝑥𝑥𝑗𝑗𝑛𝑛) is a combination of attributes, and 𝑌𝑌𝐽𝐽 ∈ 𝑅𝑅, denotes the desired 

target. Input-output datasets are dispersed identically and independently depending on an 

unknown function 𝜌𝜌(∙,∙). The target of the learning techniques is to train and examine a 

function 𝐻𝐻:𝑅𝑅𝑛𝑛 → 𝑅𝑅 that can decrease information loss, that is, 𝐿𝐿(𝐻𝐻): = 𝐸𝐸𝐸𝐸(𝑦𝑦,𝐻𝐻(𝑋𝑋)), where 

L is the smoothness error function and (X, y) denotes the testing samples from D. The 

gradient boosting approach builds a greedy series of approximations Ht:RmR, 

t = 0,1,2…, Ht = H((t−1)) + gt is the final function produced from prior approximation using 

an additive process Ht = H((t−1)) + gt. 

 

𝒈𝒈𝒕𝒕 = 𝒂𝒂𝒂𝒂𝒂𝒂 𝒎𝒎𝒎𝒎𝒎𝒎𝒈𝒈∈𝑮𝑮𝑳𝑳(𝑯𝑯𝒕𝒕−𝟏𝟏 + 𝒈𝒈) = 𝒂𝒂𝒂𝒂𝒂𝒂 𝒎𝒎𝒎𝒎𝒎𝒎𝒈𝒈∈𝑮𝑮𝑬𝑬 𝑳𝑳�𝒚𝒚,𝑯𝑯𝒕𝒕−𝟏𝟏(𝑿𝑿)�                    (𝟓𝟓)  

In general, greedy techniques, such as Newton’s method, employing a second-order approach 

of L(H(t−1) + g) at H(t−1) or adopting (negative) gradient stages, are used to address the 

optimization issue. 

3.6. Rainfall-runoff inundation model (RRI)  

RRI model has been developed by the International Center for Water Hazard and Risk 

Management in Japan. It is a 2D distributed hydrological model capable of simultaneously 

simulating both flow discharge and flood inundation (Sayama et al., 2012). The model has 

been applied in many previous studies worldwide (Perera et al. 2017; Abdel-Fattah et al. 

2018; Tam et al. 2019; Saber et al. 2020; Try et al. 2020). In this study, the model was 
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calibrated and validated based on the typhoon of 2020, showing acceptable results with the 

actual flood discharge and good agreement with flood inundation maps. The final flooding 

inundation map developed by was used for comparison with the ML FSMs for the flood 

extent mapping. 

3.7. Evaluation of the model’s performance validation  

The receiver operating characteristic (ROC) curve measure is a commonly used and validated 

strategy for assessing the reliability of a model in geospatial research (Tehrany et al. 2013; 

Chen et al. 2020). The most popular method for evaluating flood vulnerability and landslide 

approaches is the ROC curve. The classification performance of a given technique was 

evaluated using the AUC in several studies (Bui et al. 2012; Youssef et al. 2016; Youssef 

and Hegab 2019). A high classification efficiency for a given classification model should 

have an AUC-ROC value of 0.5 to 1, and the model’s performance is enhanced by boosting 

the AUC-ROC scores. When the AUC-ROC value was close to 1.0, the models offered the 

best rate of precision and consistency. This demonstrates the model's ability to forecast 

disasters without bias (Bui et al. 2012). In this study, the ROC score was determined using 

the following formula (Chang et al. 2018): 

 Other quantitative metrics (accuracy, recall, precision, and F1-score) were employed to 

check the model performance and compare its classification ability with that of its counterpart 

models in the literature. Accuracy is defined as the ratio of correctly classified data to total 

observations [Eq. (6)]; precision can be defined by the ratio of properly positive classified 

data to total positive data [Eq. (7)]. Recall, is known as sensitivity and defined by the ratio 



23 
 

of positive to the total observations [Eq. (8)]. F1-score uses weighted averaging for both the 

precision and recall [Eq. (9)]. 

 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 =
𝑻𝑻𝑻𝑻 + 𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭 + 𝑭𝑭𝑭𝑭
                                                                         (𝟔𝟔) 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 =
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭
                                                                                       (𝟕𝟕) 

 

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 =
𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭
                                                                                              (𝟖𝟖) 

 

𝑭𝑭𝑭𝑭 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 =
𝟐𝟐 (𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∗  𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷)
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∗  𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷

                                                              (𝟗𝟗) 

where true positive (TP) represents a properly categorized flooded pixel, true negative (TN) 

represents a correctly categorized non-flood pixel, false positive (FP) indicates the number 

of pixels miscategorized as flood pixels, and false negative (FN) refers to the number of 

pixels miscategorized as non-flood pixels. 

 

4. Results and Discussion 

4.1.Multicollinearity assessment and feature selection  
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According to (Chen et al. 2020), a value greater than 0.7 indicates a strong correlation 

between variables. This value was adopted in this study to detect the existence of a correlation 

between the flood-influencing factors. Ten conditioning factors (DEM, NDVI, flow 

accumulation, vertical distance from the river, and slope) were identified as correlated (Table 

1). The VIF of the vertical distance from the river (= 12), DEM (= 10.5), SPI (= 7.7), and 

flow accumulation (= 7.4) factors were more significant than the threshold value (> 5), which 

indicates a problem of multicollinearity (Fig. 7a).  

To formulate an opinion on the importance of influencing factors concerning flood 

generation, the IGR scores were computed and illustrated in Fig. 7b. According to the results, 

most factors had an IGR greater than 0.05. Only four had an inferior IGR, that is, flow 

accumulation, flow direction, rainfall, and aspect. 

The selection of conditioning factors was performed as follows: 

1. Based on multicollinearity analysis, the vertical distance from the river, DEM, SPI, 

and flow accumulation factors were removed from the selection list. 

2. Using the IGR as a selection criterion, flow direction, rainfall, and aspect were 

removed because their IGR was almost equal to zero. 

3. After removing the abovementioned factors, only the slope and the topographic 

wetness index (TWI) remained correlated variables. By comparing the IGR (Fig. 7), 

we find that the slope factor is more critical than the TWI concerning flood 

generation. Therefore, the slope factor was selected for flood prediction based on the 
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normalized difference vegetation index (NDVI), land use, curvature, geology, 

hillshade, and horizontal distance from the river. 

 

Table 1 

 

Fig. 7. 

4.2. Evaluation of the models  

This section offers a thorough analysis and comparison of all models created for this research 

concerning several categorization criteria. K-fold cross-validation was used throughout the 

learning phase. A learning set (60 percent) was created from the reviewed data, and the 

remaining data were used to gauge accuracy. The learning datasets was divided into two 

groups: validation data, which was used for hyperparameter tuning, and training data (80%), 

which was used to modify reduce classification mistakes and model weights. The relevant 

hyperparameters for each classification method were selected using the grid search method. 

A broad range of hyperparameter values was evaluated during the process. The best designs 

for each classifier are listed in Table 2.  

The accuracy rates of all the studied models are listed in Table 3. As can be seen, all 

developed classification techniques achieved approximately identical results in terms of 

statistical metrics. The LightGBM model slightly outperformed the others regarding speed 

convergence and classification metrics. The ROC curve of the generated models on the test 

ensembles is displayed in Fig. 8, which reveals that the three suggested boosting strategies 

have similar qualities and provide significant accuracy. The maximum AUC was reached by 
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LightGBM and RF models with the same score (99.5%), and CatBoost was ranked as the 

worst model with an AUC of 97.9%. 

Furthermore, CatBoost scored the first rank in terms of accuracy performance accuracy equal 

to 97.8 %, precision equal to 96%, accompanied by LightGBM classifier with an accuracy 

of 97.3% and precision of 95%. Finally, the RF model was ranked as the last classifier model 

with an accuracy equal to 95.5% and a precision of 96.2%. In comparison with previous 

studies, RF in this study outperformed many of the previous applications, including (e.g.,       

AUC = 0.925, Chen et al. (2020); AUC = 0.886, Tang et al. (2020); AUC = 0.7878, Lee et 

al. (2017); AUC = 0.972, Achour and Pourghasemi (2020)).       

The confusion matrix in Fig. 9. shows the performance of the used models in the study area, 

where CatBoost shows better prediction followed by LightGBM and, finally, the RF 

methods; however, all of them display an acceptable prediction.  

This study examined two novel boosting classification models for flooding susceptibility 

assessment in the VGTB River Basin. From the evaluation statistics, we can conclude that 

the LightGBM and CatBoost models proved their performance for flooding susceptibility 

and can be used as essential tools for real-time application compared to their counterpart 

models because of their high performance and speed convergence.  

 

Table 2. 

Table 3. 



26 
 

 

 This work examined two novel boosting classification approaches for predicting flood 

vulnerability in the VGTB. This is the first work investigating CatBoost and LightGBM for 

flood classification in humid environments against the frequently used RF models. The 

results revealed that LightGBM outperformed its counterpart ML models, especially 

regarding processing time and classification metrics. This agrees with the findings of Saber 

et al. (2021) that LightGBM has proven its efficiency in flash flood prediction and 

outperforms the other two methods in classification and processing time. In addition, it was 

stated that LightGBM outperformed other methods such as the RF, M5Tree, and empirical 

models for estimating daily evapotranspiration in China as a humid subtropical area (Fan et 

al. 2019). 

Similarly, it was also found that LightGBM performed better than the others in terms of AUC 

(99.5%). The accuracy of CatBoost (97.9%) was also high compared to the previous studies 

in other fields. Among other methods, CatBoost, SVM, and RF have been applied to 

evapotranspiration modeling in China (Huang et al. 2019). They stated that CatBoost 

presented higher accuracy and lowered computational cost than the other approaches (RF 

and SVM). 

Fig. 8. 
Fig. 9. 

4.3.     Flood Susceptibility Modeling  
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The newly applied boosting techniques (CatBoost and LightGBM) and RF demonstrated 

their high performance in predicting flooding in a humid climate environment. The flood 

susceptibility maps for the whole VGTB river basin were thus estimated using these 

approaches. Then, the three FSMs developed using the three models were compared with the 

flood inundation map of the RRI model regarding the flood extent, as shown in Fig. 10. The 

flooding susceptibility values were then mapped under five levels of susceptibility classes: 

no flood, low, moderate, high, and very high.  

The FSMs by the employed models showed that the areas of high and very high levels of 

susceptibility to flooding to be 13% (RF), 11% (LightGBM), and 10% (CatBoost) of the total 

area, which agrees with the flood inundation map developed by RRIat approximately 11%. 

This level of susceptibility is predominant in the coastal and plane areas along the Vu Gia 

and Thu Bon Rivers (Fig. 10 and 11). The spatial distributions of the high and very high 

levels were similar in all the maps produced by the ML and RRI models. The areas affected 

by a moderate level of susceptibility to flooding (Fig. 11) were estimated at 10% (RF), 0% 

(LightGBM), and 1% (CatBoost), indicating that both LightGBM and CatBoost are more 

similar to the RRI model which shows a value of approximately 1%. The areas affected by 

the low level of susceptibility to flooding (Fig. 11) were estimated at 36% (RF), 1% 

(LightGBM), and 2% (CatBoost), which also revealed that both LightGBM and CatBoost 

performed better, with good agreement with the RRI model showing the value of 

approximately 3%. It was also found that the areas that were not subjected to the flooding 

were approximately 42% (RF), 83% (LightGBM), and 87% (CatBoost) of the total study area 

(Fig. 11), showing good agreement with RRI model that shows approximately 90%. 
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However, the performances of the employed models are almost the same. The two new 

methods of LightGBM and CatBoost outperform RF in terms of the spatial coverage of the 

flood susceptibility levels compared with the RRI model.  The RF overestimated the low 

flood susceptibility in the study area. The spatial distribution of FSM is consistent across 

utilized ML models, emphasizing that most of the residential and agricultural sectors are 

concentrated in coastal regions prone to flooding.   

Fig. 10. 

Fig. 11. 

4.4. Testing different sizes of the datasets 

In this section, we tested different sizes of the datasets, including flooded and non-flooded 

points (1250, 1000, 800, 600, 400, 90, 60, and 30) of the training model (Fig. 12).  The 

training datasets were classified as 50% and 50% for flooded and non-flooded points, 

respectively; however, the testing datasets were the same during the simulation (Fig. 12).  We 

found that accuracy scores for all the models and all the tested cases were greater than 90% 

(Fig. 13), except for dataset sizes of 60 and 30 points in LightGBM. The accuracy score 

slightly decreases with the decrease in the datasets in both the LightGBM and CatBoost 

models but is inconsistent in the RF model. This implies that the ML approaches employed 

in this study can effectively work with very limited training datasets with a slight decrease 

in accuracy, which will be applicable for ungauged regions with deficient monitoring and 

observations of flooding occurrences and impacts. The FSMs developed based on different 

training datasets show that most spatial maps are acceptable as overall spatial coverage; 
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however, there are some small spatial differences in the susceptibility flooding levels (Figs. 

14 and 15).  For instance, all datasets (1250, 1000, 800, 600, 400, 90, 60, and 30) except for 

the dataset of 200 had almost the same percentage of impacted regions (Figs. 14 and 15) in 

the category of extremely high flood susceptibility. On the other hand, the affected areas by 

the high flood susceptibility level also vary. Still, the highest percentage was 9% for the 200 

and 60 datasets, and the lowest was 6% for 30, 90, 600, and 800 datasets.  The variation in 

moderate flood occurrence ranged from 17% to 9%. The dataset size of 30 was the highest 

among the others, about 17%. The range of the low flood susceptibility category was highly 

variable, from 20% to 41%, the lowest was for the dataset of 30, and the highest was for the 

dataset of 800. The reasons for such variation are probably the random selection of the 

flooded samples, which in some cases are not representative of all the influencing factors. 

We noticed that the spatial coverage was not extremely different, but some differences were 

observed based on the categories. The areas with no flood levels are also changeable by about 

42%, 42%, 38%, 45%, 44%, 45%, 42%, 44%, and 51% for the datasets of 1250, 1000, 800, 

600, 400, 200, 90, 60, and 30, respectively. Interestingly, the highest percentage was recorded 

by the dataset of 30 points and the lowest by dataset 800.  The analysis of different data sizes 

for ML training shows that ML can effectively predict the flood susceptibility maps in the 

study area regardless of the number of samples, with the condition of the used data being 

observational flooded sites.  

Fig. 12.  

Fig. 13.   
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Fig. 14.  

Fig. 15. 

4.5.  Discussion and comparison with results of the RRI model   

 The flood risk assessment scientific community is endeavoring to develop much more 

logical and mathematical methods for FSM forecasting at different catchment scales (Arora 

et al. 2020). Some previous studies on flood susceptibility mapping use ML approaches and 

deep learning in the study area. Testing many models is therefore strongly advised, especially 

in areas with little data and complex hydrological models. This study applies three ML 

methods: LightGBM, CatBoost and RF. The LightGBM and CatBoost techniques were put 

to the test for the first time for mapping flood susceptibility in this humid area with a high 

frequency of typhoon occurrences. Compared to the commonly used RF approach, the 

findings of the flooding susceptibility maps show that the two methods can forecast flood-

prone regions with respectable accuracy. AUC = 78 percent (Band et al. 2020), 99.3 percent 

(Li et al., 2019), 94.5 percent (Talukdar et al., 2020), 93.8 percent (Park and Lee, 2020), and 

89.4 percent (Talukdar et al., 2020) use RFs in several additional related research with 

varying degrees of accuracy (Nguyen et al., 2018). Compared to earlier research, the AUC = 

99 percent for RF in this study was greater.  

Additionally, the newly applied methods of LightGBM and CatBoost showed almost the 

same accuracy of 99% and 98%, respectively, revealing better performance than most 

previous studies. These three methods have been tested in Hurghada, Egypt (Saber et al. 

2021), stating that LightGBM has the advantage of better classification metrics and fast 
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processing time and outperforms other methodologies such as CatBoost and RF. In addition, 

their results showed that LightGBM and CatBoost had proven their efficiency in flash flood 

prediction in arid regions (Saber et al. 2021).  

 The three techniques also outperformed the 90 percent average performance of 

previously used methods for mapping flood susceptibility, which was based on an average 

of about 140 prior applications from more than 30 papers that have been analyzed. Based on 

AUC, the effectiveness of the prior techniques used for FSM ranges from 64 percent 

(Shafizadeh-Moghadam et al. 2018) to 99.3 percent (Li et al. 2019). CatBoost was also 

applied in Germany, with better performance than other methods, showing good accuracy 

with an AUC of 0.816 (Kaiser, M. H. E. (2021)).  

The maps of flood susceptibility developed using ML techniques (Fig. 10) showed an 

acceptable fit with the generated flood inundation map by the RRI model, showing that the 

ML approaches are promising for flood prediction and can be used without detailed 

observations and challenges of model calibrations as alternative tools for hydrological 

models. The results of LightGBM and CatBoost are more comparable to the flood inundation 

map developed by the physical RRI model, indicating that they are more acceptable than RF, 

which overestimates the low flood susceptibility level in the study area.  

Furthermore, we tested different datasets for training the three ML models, concluding that 

datasets more than 90 points can be sufficiently accurate for reasonable prediction of the 

FSM. LightGBM and CatBoost showed a slightly declining trend in the accuracy of the 
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results based on the dataset sizes; however, RF did not show such a trend. These results are 

precious for applying ML to ungauged basins with very limited datasets.   

5.  Conclusions 

 Flooding resulting from typhoons is one of the most threatening disasters in Asian 

countries and worldwide. Therefore, the present study introduced three ML methods to 

accurately predict flooding susceptibility in Vietnamese humid areas.  The first method is 

RF, which is well known and widely applicable in many applications, including FSM, and 

the other methods of LightGBM and CatBoost were examined for the first time for FSM in 

this humid region. On the basis of a flood inventory map and ten flood-influencing factors, 

the models were trained and validated. Owing to the availability of high-quality observations, 

we also tested different datasets for the training (i.e., 30, 60, 90, 200, 400, 600, 800, 1000, 

and 1250 data points) to determine the minor data points that provided acceptable reliability, 

as well as to understand the differences in the spatial FSMs in the study area. 

Interestingly, we found that the accuracy of results based on all the tested datasets was higher 

than 90%, indicating that a limited number of observations can be used efficiently in model 

accuracy. However, the final FSMs differed spatially from one susceptibility level to the 

others. This finding is significant to demonstrate that ML methods can work efficiently with 

an acceptable level of accuracy within a small number of actual training datasets. The 

conclusions of this study can be summarized as follows: 
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• We applied three ML models—RF, LightGBM, and CatBoost—to predict flood 

susceptibility in humid areas that experienced successive extreme typhoons. 

• The LightGBM and CatBoost models were tested for the first time in this specific 

climatic region and showed high performance compared to the RF method.  

• The results of the ML methods showed good agreement with the rainfall-runoff model 

for flood inundation mapping, especially the LightGBM and CatBoost models in 

terms of coverage areas of the flood susceptibility levels.   

• Different training datasets were examined to determine ML's lowest acceptable 

number of observations for flooding susceptibility.  

• The FSMs demonstrated that downstream areas with high residential and agricultural 

activity are highly susceptible to flooding.  

• These results might be utilized as a guide and reference for flood risk reduction and 

management in this region, therefore assisting managers, decision-makers, and 

planners in successfully managing and reducing floods in high-risk flood zones.    

The study concludes that the ML approach can effectively predict flood susceptibility with 

an acceptable agreement with hydrological models in flood mapping. An extension of this 

research is ongoing to predict the flood depth using machine learning and physical-based 

hydrological models.  
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1.  Introduction
River discharge is a crucial indicator to understand terrestrial water cycles and supplies necessary information 
about water resource management (Adnan et al., 2020). Direct measurement of river discharge, such as employ-
ing the acoustic Doppler current profiler, is complicated, costly, time-consuming, and labor-intensive because 
it requires a number of current sensors and repeated surveys performed by boats and is thus unsafe under unfa-
vorable flow and weather conditions (Gisen & Savenije, 2015; Matte et al., 2018). Other noncontact methods, 
including large-scale particle image velocimetry (LSPIV) (Akbarpour et al., 2020) and remote sensing (Kebede 
et al., 2020), have recently begun to be used for discharge measurements. Nevertheless, the use of these meth-
ods in contiguous monitoring of river discharge is not feasible; for example, LSPIV cannot measure discharge 
in large rivers because of limited camera coverage, while satellite images are not always available due to cloud 
cover, particularly during rainy seasons. As a result, at hydrological stations situated on rivers worldwide, flow 
discharge is not directly measured; rather, it is indirectly estimated either from the widely used stage-discharge 
rating curve (RC) method or from cubature, rating-fall, tide-correction, and coaxial graphical-correction meth-
ods (Matte et al., 2018), in which the stage (water level) is recorded at specific intervals (e.g., daily, hourly, or 
sub-daily) depending on the goal of the measurements. Due to technical, financial, maintenance and political 
instability issues, long-term flow discharge datasets may have gaps, resulting in the loss of information or the 
misinterpretation of historical flow regime changes and hydrological processes (Tencaliec et al., 2015). There-
fore, it is important to reconstruct missing discharge values to reliably provide helpful information for water 
resource management at the basin scale.

Several methods, including statistical methods, numerical models, and machine learning (ML) algorithms, have 
been employed to predict river flows. Recently, ML techniques, such as support vector regression (SVR) (Adnan 
et al., 2020; Luo et al., 2019), random forest (RF), Gaussian process regression (GPR) (Sun et al., 2014), M5 

Abstract  In this study, six machine learning (ML) models, namely, random forest (RF), Gaussian process 
regression (GPR), support vector regression (SVR), decision tree (DT), least squares support vector machine 
(LSSVM), and multivariate adaptive regression spline (MARS) models, were employed to reconstruct the 
missing daily-averaged discharge in a mega-delta from 1980 to 2015 using upstream-downstream multi-station 
data. The performance and accuracy of each ML model were assessed and compared with the stage-discharge 
rating curves (RCs) using four statistical indicators, Taylor diagrams, violin plots, scatter plots, time-series 
plots, and heatmaps. Model input selection was performed using mutual information and correlation coefficient 
methods after three data pre-processing steps: normalization, Fourier series fitting, and first-order differencing. 
The results showed that the ML models are superior to their RC counterparts, and MARS and RF are the 
most reliable algorithms, although MARS achieves marginally better performance than RF. Compared to RC, 
MARS and RF reduced the root mean square error (RMSE) by 135% and 141% and the mean absolute error by 
194% and 179%, respectively, using year-round data. However, the performance of MARS and RF developed 
for the climbing (wet season) and recession (dry season) limbs separately worsened slightly compared to that 
developed using the year-round data. Specifically, the RMSE of MARS and RF in the falling limb was 856 and 
1,040 m 3/s, respectively, while that obtained using the year-round data was 768 and 789 m 3/s, respectively. In 
this study, the DT model is not recommended, while the GPR and SVR models provide acceptable results.
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model tree (Nourani et al., 2019), decision tree (DT) (Choi et al.,2019), least squares support vector machine 
(LSSVM) (Rezaali et  al.,  2021), multivariate adaptive regression spline (MARS) (Jeihouni et  al.,  2020), and 
adaptive neuro-fuzzy inference system (Hadi & Tombul, 2018a) models, have been increasingly used because 
they are powerful, robust and efficient algorithms for streamflow prediction given their advantages compared to 
traditional approaches (Khan et al., 2016; Liu et al., 2020; Mispan et al., 2015).

SVR is easily adaptable for use in multiple engineering disciplines and, in many cases, outperforms other meth-
ods, such as artificial neural networks and DTs (Raghavendra & Deka, 2014). Luo et al. (2019) developed 14 
ML techniques to predict the monthly discharge of the Jinsha River in Iran, revealing that a hybrid SVR method 
performed better than a generalized regression neural network (GRNN). In modeling the monthly discharge in 
the Swat River basin in Pakistan, Adman et al. (2020) found that least squares SVR was superior to other ML 
models and was recommended for monthly streamflow forecasting without local data. The RF nonparametric 
algorithm is a type of DT algorithm that includes an ensemble collection of unrelated trees for classification 
and regression purposes (Breiman, 2001). The advantage of using an RF over a single DT is the reduction in 
variance achieved by creating several trees, in which each tree is constructed based on a leverage sample of the 
training database (James et al., 2013). In an attempt to predict the water level in an urban reservoir in Atlanta, 
Georgia, Obringer and Nateghi (2018) demonstrated that an RF was the most accurate predictive model among 
the nonparametric ML algorithms considered, and the proposed method is highly transferable to other reser-
voirs. RF algorithms have been used to reliably predict the outflows of nine reservoirs in California, given reli-
able input parameters related to precipitation, reservoir inflows, reservoir storage, and downstream conditions 
(Yang et al., 2016). GPR is a Bayesian learning technique for model approximation, multivariate regression, 
and experimental design (Rasmussen & Williams, 2006). The power of GPR compared to other ML models is 
that it simplifies the integration of several ML functions, including hyperparameter evaluation, model train-
ing, and uncertainty quantification (Rasmussen & Williams, 2006; Sun et al., 2014). Thus, GPR is relatively 
uninfluenced by subjectivity, and the results can easily be interpreted (Sun et al., 2014). Zhu et al. (2018) used 
a GPR model to estimate the streamflow in the Jinsha River; they reported that GPR performed better than a 
GRNN but was not good at predicting extreme flows. Sun et al. (2014) established a GPR model to simulate 
monthly streamflow in 438 river basins in the U.S. (MOPEX database); they revealed that the GPR model 
outperformed regression methods in most basins.

Most recently, advanced ML techniques, including LSSVM and MARS, have received intense attention in hydro-
logical studies. Wang et al. (2020) proposed a new method to predict the evaporation of arid areas in China by 
applying the MARS method. In a digital application, Jeihouni et al. (2020) employed the MARS model to map 
soil moisture retention parameters using only satellite data with less prediction uncertainty and high accuracy 
results. Additionally, Safari (2020) employed MARS and multi non-linear regression (MNLR) to improve the 
precision of predicting sediment accumulation in open channel flow areas.

Regarding the prospects for the application of the LSSVM model, Rezaali et al. (2021) used this advanced model 
for highly accurate forecasting of the urban water demand in Qom, Iran. In addition, the LSSVM model was used 
for water resource management by enhancing the accuracy of the prediction of mid-to long-term streamflow 
(Zhao et al., 2021). In methane transport modeling, Taherdangkoo et al. (2021) employed the LSSVM model to 
estimate methane solubility in aquatic environments for a variety of temperatures and pressures. Moreover, the 
LSSVM model was demonstrated to be effective for forecasting the quality of the air in the Yangtze River Delta 
of China (Zhou et al., 2020). Because numerous ML models are available, researchers may struggle to determine 
which ML model is appropriate for a particular problem. Unfortunately, no ML algorithm provides a satisfactory 
result for all problems involving hydrological processes, and many methods remain in the development stage. 
Although the SVM, RF, DT, LSSVM, MARS, and GPR models have been widely employed in various research 
fields (e.g., Jeihouni et al., 2020; Granata et al., 2017; Kisi & Parmar, 2016; Panahi et al., 2020; Rezaali et al., 
2021), their application in estimating river discharge has been limited (e.g., Tongal & Booij, 2018; Yaghoubi 
et al., 2019). Therefore, this study employs these techniques to explore their power/applicability in reconstructing 
the daily discharge in the Mekong River.

Hydrological data are highly nonstationary (Yarar, 2014), and ML models, or artificial intelligence models in 
general, have demonstrated limitations in coping with nonstationary phenomena (Nourani et al., 2017). More-
over, hydrological data often contain seasonal effects driven by hydrologic cycles. It is therefore necessary to 
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perform data pre-processing before applying ML models, and Fourier series fitting can decompose complex 
original hydrological data into sub-signals with a variety of valuable features to interpret the time series structure 
and clarify spectral and temporal information (Nourani et  al.,  2019). Another challenging task in simulating 
hydrological processes using ML models is model input selection. Too many or too few model inputs may intro-
duce noise, increase model complexity and increase the model run time; both instances can lead to poor model 
performance (Tran et al., 2015). A traditional approach in model input selection involves the use of a rank-based 
correlation coefficient, such as the Pearson correlation coefficient, to reflect the linear relations among variables 
(Zhu et al., 2018). Another more advanced metric is mutual information (MI), which can help reduce the number 
of model inputs (Nourani et al., 2017). Although MI, as a nonlinear measure used to explain one variable based on 
another random variable, is useful in reducing simulation effort, its application in the field of hydrology remains 
limited. This study used both MI and the Pearson correlation coefficient to derive the dominant model inputs after 
data pre-processing by standardization to remove trends related to the variance and mean; additionally, Fourier 
series fitting was performed to remove seasonal effects, and first-order differencing was used to convert a nonsta-
tionary data set to a stationary data set.

Most previous studies reconstructed/predicted monthly and annual averaged discharge series (Adnan 
et al., 2020; Hadi & Tombul, 2018b; Khalil et al., 2001; Liu et al., 2020; Sun et al., 2014; Yarar, 2014; Zhu 
et al., 2016), and studies that have reconstructed daily-averaged series are scarce. This scarcity is likely due 
to data availability and the complex non-stationarity and nonlinearity of daily averaged data. Notably, the 
complexity of hydrological data is increased by the effects of tides in the major deltas worldwide, such as 
the Vietnamese Mekong Delta (VMD), which is the study area considered in this paper. In tidal deltas, flow 
discharge is seasonally variable, with riverine and marine dominance in the flood and dry seasons, respec-
tively. River tides are largely nonstationary and nonlinear because tides are governed by the effects of hundreds 
of major and minor astronomical factors (Moftakhari et al., 2013); thus, analyses of flows in tidally affected 
rivers are complicated by the appearance of a large number of frequencies (Hoitink & Jay, 2016). Spatial accel-
eration, friction, and discharge gradients also control river-tide interactions, making the direct estimation of 
fluvial discharge challenging (Hoitink & Jay, 2016). Being nonstationary, water levels in tidally affected rivers 
are continuously variable during spring-neap tidal cycles, which has led to a consensus that water levels at tidal 
stations are not the same under different tidal conditions (Hoitink & Jay, 2016). Moreover, tides may increase 
the water surface gradient and river slope (Jay et al., 2011) to transport more river water during spring tides 
than during neap tides. Such an increase in the water surface gradient is necessary to enhance the transport 
capacity of rivers against the increased river friction generated by high discharge amplitudes during spring 
tides (Buschman et al., 2009).

Moftakhari et al. (2013) proposed a conceptual modeling tool for tidal discharge estimation (TDE) based on 
sets of governing equations by combining theories of astronomical forcing, tidal constituents, and friction to 
hindcast the monthly averaged tidal discharges in the San Francisco Bay. Although the estimation was prom-
ising, the use of the TDE model is complicated, and many hindcast parameters and extended periods of data 
observations are required (Gisen & Savenije, 2015); because these are system specific, their application to 
other tidally affected rivers, particularly in developing countries, where river systems are largely ungauged, 
is difficult. Gisen and Savenije (2015) developed a semi-empirical approach to compute bankfull discharge 
in ungauged estuaries by combining hydraulic geometry and hydrodynamic theories. The methodology devel-
oped included five main components, namely, estuary geometry, freshwater discharge upscaling, tidal dynam-
ics, regime relations, and estuarine flood number estimation. The derived discharges are estimated with high 
confidence; however, the application of this method is relatively challenging due to the introduction of several 
restriction criteria. Moftakhari et al.  (2016) developed the multiple-gauge tidal discharge estimate (MTDE) 
method to estimate the discharge in tidal rivers in North America using tidally observed data at multiple 
stations near estuaries. The MTDE method can estimate the discharge with a temporal resolution of less than 
a week; this resolution is finer than that of the TDE method. However, the major shortcoming of the MTDE 
method is the need for at least three tide gauges, one of which must be near the ocean. This is not applicable 
in most of the world's tidal rivers because hydrological stations are relatively far from the river mouths (Gisen 
& Savenije, 2015).

RC has been widely used to reconstruct missing data in deltas, although a special focus must be placed on vari-
ous tasks, such as establishing RCs for the rising and falling limbs separately (Binh, Kantoush, et al., 2021). 
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Moftakhari et al. (2015) employed the RC method to reconstruct daily discharge and sediment delivered to San 
Francisco Bay by dividing the water level data into two subsets (i.e., <6.2 and >6.2 m) according to the effect of 
flooding. However, the RC method involves several limitations and uncertainties induced by dynamic changes in 
river geometry and roughness or the effects of backwater and tides (Matte et al., 2018). Uncertainties also arise 
from the difficulty in measuring the discharge during extreme floods for updating the RCs. Studies reported in 
the literature have shown that conventional approaches such as the RC and TDE methods have their own limita-
tions and uncertainties under the effects of reversing tidal flow, tidal Stokes drift, spring-neap tidal cycle, lateral 
circulation, estuarine dynamics, and the occurrence of multiple branches in estuaries (Moftakhari et al., 2016). 
Therefore, the use of ML models in discharge estimation is expected to overcome the shortcomings of their 
conventional counterparts. Although ML models have been proven to be an efficient and promising tool, their 
application for daily-averaged discharge prediction in tidally affected rivers remains uncommon worldwide. In 
the VMD and Mekong River, no study has used ML algorithms to reconstruct daily-averaged discharge. One of 
the advantages of using ML models is that they are highly transferable to other river systems with little effort in 
acquiring a variety of datasets required compared to conceptual, statistical, and numerical models, making them 
time-saving and cost-effective.

This study developed a robust methodology to reconstruct missing daily-averaged discharge values in a tidally 
affected river in the VMD using ML techniques. First, the model inputs using multi-station data with respect 
to upstream-downstream relations were optimized by employing MI and Pearson correlation coefficients 
after three-step data pre-processing. SVR, GPR, RF, DT, LSSVM, and MARS models were then used and 
compared to determine the most reliable model. Finally, the best model(s) was further evaluated considering 
the seasonal patterns of the input data. The purpose of this analysis was to answer the following question: can 
ML approaches increase the daily-averaged discharge reconstruction accuracy considering seasonal patterns? 
In this study, we employed ML models using multi-station input data to reconstruct daily-averaged discharges 
in a tidally affected river. The use of only the water levels at multiple upstream stations as inputs into the 
ML models has two major advantages. First, the water level is directly, easily, and cheaply monitored in 
river systems, whereas direct discharge measurement is time-consuming, expensive, and impractical. Second, 
during extreme events, it is impossible to measure the discharge due to safety concerns (i.e., having to operate 
a boat in a flooded river), whereas measurements of the water level can be obtained anywhere, at any time, and 
under all conditions, although river gauges can fail or become compromised (Helaire et al., 2020). Finally, the 
method developed in this paper can easily be adopted for any river system even though ML models contain 
black box algorithms.

2.  Case Study and Used Data Set
The Mekong River is the eighth largest river globally in terms of the annual discharge of 475 km 3 (Grum-
bine et al., 2012), and it flows through six countries from the watercourse in China to the ocean in Vietnam. 
The VMD (Figure 1a) has been formed and propagated over the last 6,000 years (Ta et al., 2002) by water 
and sediment transported by the Mekong River (Binh, Kantoush, & Sumi,  2020). The flow regime in the 
VMD is seasonally variable, with two distinct flood and dry seasons (Binh, Kantoush, Saber, et al., 2020). 
August-October (flood months) is when approximately half of the annual discharge occurs, and approximately 
8% occurs in February-April (dry months). The VMD faces many hydrological problems, such as floods, 
droughts, and salinity intrusion (Eslami et al., 2019; Hoa et al., 2007; Kantoush et al., 2017; Loc et al., 2021; 
Triet et al., 2017). La Niña and El Niño have caused periodic occurrences of extreme floods (e.g., 1996, 2000, 
and 2011) and droughts (e.g., 1993, 1998, 2005, 2010, 2015, and 2020), resulting in tremendous damage to 
the delta. The flow regime in the delta is influenced by tides, with strong tidal effects in the dry season (peak 
in dry months) and fewer tidal effects in the flood season (Gugliotta et al., 2017). In dry seasons, tidal effects 
are observable at Phnom Penh, Cambodia, which is approximately 320 km from the river mouth (Gugliotta 
et al., 2017). The semidiurnal tide in the East Vietnam Sea (Figure 1a) causes the discharge hydrograph to have 
two peaks and two troughs daily.

Tan Chau and Chau Doc (in the Tien and Hau Rivers, respectively) are the first two major hydrological gauges 
(tidally affected) at the entrances of the VMD, and the historical data series obtained at these stations are longer 
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than those obtained at newer hydrological gauges. Tan Chau conveys approximately four times more water than 
Chau Doc (Binh, Kantoush, et al., 2021). Hourly discharge at Tan Chau was persistently monitored from 1996 to 
2015, whereas daily-averaged discharge (from 1980 to 1995) was available several months per year (Figure 1b). 
The hourly discharge from 1996 to 2015 was averaged over a day to create the daily-averaged discharge, which 
is equivalent to the de-tided discharge (Binh, Kantoush, et al., 2021); however, the tidal effect does not disappear 
completely (Hoitink & Jay, 2016). A frequency analysis of the observed daily-averaged discharge at Tan Chau 
from 1980 to 2015 (Figure 1c) shows that the majority of the discharge values are less than 6,500 m 3/s (39%) 
and vary from 16,250 to 22,250 m 3/s (31%); only 2% of the daily-averaged discharge values exceed 22,500 m 3/s. 
Given the importance of understanding long-term flow variations when assessing the corresponding causes, 
consequences, and appropriate actions, it is important to fill the gaps in the historical records. In this study, ML 
algorithms were used to reconstruct the missing daily-averaged discharge values at Tan Chau and to establish a 
framework for the other stations in the VMD.

The VMD receives water directly from the Mekong River, and Kratie is a gauging station at the apex of the 
Mekong Delta (from the Cambodian Mekong Delta) (Figure 1a). Tonle Sap Lake in Cambodia is of utmost 
importance in naturally regulating the flow in the VMD to the extent that the lake retards flood water and 
reverses the flow back to the VMD in the dry season (Park et al., 2022; Pokhrel et al., 2018). Tonle Sap Lake 
is connected with the Mekong River by the Tonle Sap River, and Prek Kdam is an important gauging station 
that records the exchanged flow regimes (Figure 1a). Figures 1d–1f show that the flow pattern at Tan Chau is 
physically consistent with those at Kratie and Prek Kdam, with similar rising (April–September) and falling 
(October–March) limbs.

Figure 1.  (a) The Mekong River basin and the Vietnamese Mekong Delta (VMD): the main rivers and hydrological stations. 
The tidally affected and non-tidally affected hydrological stations are distinguished by different colors. (b) Observed daily-
averaged discharge values at Tan Chau (1980–2015) with the periods of training and testing in the machine learning (ML) 
models indicated. (c) Histogram showing the frequency of the daily-averaged discharge at Tan Chau from 1980 to 2015. 
Mean monthly discharge values at (d) Tan Chau and the water levels at (e) Kratie and (f) Prek Kdam from 1996 to 2015 show 
similar seasonality for flow regimes. The data in (d–f) were sorted to clearly illustrate the rising (gray bars) and falling limbs 
(green bars).
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In reconstructing the daily-averaged discharge at Tan Chau using the ML models, data from multiple upstream 
stations, that is, the daily-averaged water levels at Kratie and Prek Kdam, were used. The Mekong River Commis-
sion provided water level data at Kratie and Prek Kdam from 1980 to 2015 (https://portal.mrcmekong.org/
time-series). Using water levels as the input data is practically feasible because these values, rather than discharge 
values, are directly monitored at all hydrological stations on the Mekong River. Researchers can request such 
data from the Mekong River Commission. The daily-averaged discharge data at Tan Chau collected from 1980 to 
2015 (38.8% of the data are missing) were obtained from the Vietnam National Centre for Hydrometeorological 
Forecasting. The outcomes from the ML models were compared to those from the conventional RC to assess the 
applicability of ML in the VMD and tidally affected river systems in general.

3.  Proposed Method and Materials Used
3.1.  Data Pre-Processing and Model Input Selection

Figure 2 shows the methodology proposed in this study. Six ML models were built considering the input data at 
multiple upstream stations (i.e., water levels at Kratie and Prek Kdam) to assess the trends at individual stations 
and the combined contributions to the results. In the ML models, the tidal effect is implicitly considered in the 
target model (output) because the input water levels are not affected by tides. The results from the ML models 
were compared with those obtained from linear stage-discharge RCs at the station examined (Tan Chau). These 
RCs were separately established based on both year-round data and data for the rising and falling limbs, following 
the work of Binh, Kantoush, et al. (2021). One of the purposes of this approach was to understand the advantages 
of nonlinear models with ML versus linear regression models based on RCs.

In this study, we applied three data pre-processing steps for the raw normalized datasets. The first step was stand-
ardization to remove trends related to the variance and mean from the datasets; the second step was the removal 
of seasonal effects through Fourier series fitting because the data were influenced by seasonality (Figure 1b); 
the third step was first-order differencing to convert a nonstationary data set to a stationary data set. Then, MI 
and correlation coefficient methods were applied to determine the dominant model inputs, accounting for time 
lags. The correlation coefficient was used in the analysis because it defines the dependence of two independent 
variables in time and space; therefore, it is a kind of temporal correlation for time series with different time lags.

To remove the seasonal influence from time series data, a fitting Fourier series model was used. The basic 
concept of this Fourier series model for time series decomposition was proposed by Delurgio (1998) as follows:

�� = � + �� +
∑�

�=1
(�� cos ��� + �� sin��)� (1)

Figure 2.  Flowchart of the study showing the research steps.

https://portal.mrcmekong.org/time-series
https://portal.mrcmekong.org/time-series
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where Xt is the fitted value at time t; a is a constant related to the series level; b is the trend estimate of the series; 
aj and bj (j = 1, 2, 3, …, k) are Fourier coefficients; w is the Fourier frequency; and k is the highest harmonic of w.

The first-order differencing method has been widely used as a simple procedure to convert nonstationary time 
series to stationary time series, as proposed by Anderson (1976). In other words, a new data set of a variable can 
be obtained from a measured data set by subtracting the value of that variable at time t − 1 (Xt−1) from its value 
at time t (Xt). This method can be expressed as follows:

𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡 +𝑋𝑋𝑡𝑡−1� (2)

MI is a quantitative metric based on information entropy, and it expresses the dependence or cooperation among 
random variables (Akca & Yozgatlıgil,  2020). Unlike traditional correlation metrics, MI does not require an 
assumption based on dependence, and the provided mutual information encompasses both linear and nonlinear 
relationships. MI stems from Shannon entropy in information theory (Shannon, 1948). The discontinuous random 
variable x (from x1 to xn) and probabilities (from P1 to PN) are expressed by the following equation:

𝐻𝐻(𝑥𝑥) =

𝑁𝑁
∑

𝑖𝑖=1

𝑃𝑃 (𝑥𝑥𝑖𝑖) 𝐿𝐿𝐿𝐿𝐿𝐿 [𝑃𝑃 (𝑥𝑥𝑖𝑖)]� (3)

The MI criterion is the amount of information shared among discontinuous variables X and Y (Yang et al., 2000). 
It is assumed that the two variables x and y correspond to probabilities m and n, and the ranges of these proba-
bilities are indicated by i and j, respectively. Accordingly, MI is defined as MI(X, Y), where A and B share MI.

MI(�, � ) =
�
∑

�=1

�
∑

�=1

��� (�1, �1)log
(

��� (�1, �1)
�1(� = ��)�2(� = ��)

)

� (4)

In this equation, Pi is the probability of i; P(i, j) is the joint probability of i and j.

Based on the results of the MI and correlation coefficient analyses, five dominant model inputs were used: the 
water levels at Kratie at t–1 (WKt−1) and t–2 (WKt−2) and the water levels at Prek Kdam at t (WPt), t−1 (WPt−1), 
and t−2 (WPt−2). In this case, t is the selected time, and t–1 and t−2 are the 1- and 2-day lagged times, respec-
tively. Notably, the flow at Prek Kdam changes sooner than the flow at Kratie because Prek Kdam is closer to Tan 
Chau than is Kratie. The time lag concept is not considered in the RC model.

3.2.  ML Models: Theoretical Background and Optimization

In the ML models, we considered three periods for the training data set (70% of the data), namely, 1980–1983, 
1996–2007, and 2012–2015, and two periods in the testing data set (30% of the data), namely, 1984–1995 and 
2008–2011. The training data set was selected to represent all kinds of flow events, ranging from flood years 
(e.g., in 2000) to drought years (e.g., in 2015). Similarly, the testing data set covered both flood years (e.g., in 
2011) and drought years (e.g., in 2010). For each ML method, we established the theoretical background and 
adjusted hyperparameters for model optimization.

3.2.1.  Decision Tree

DT is an ML method used for prediction and classification (Quinlan, 1986). This method has been employed in 
various studies due to its simplicity and high predictive accuracy (Choi et al., 2019).

A DT could predict responses by converting the observed values of features in ML models. These models are 
based on the relationship between the predictor and the response for a given data set. A DT defines each param-
eter and determines distinct values based on the impurities observed at roots. Therefore, the DT approach is 
straightforward to implement; nevertheless, its reliability is sometimes inadequate because it is prone to overfit-
ting and linear regression loss (Ragettli et al., 2017). Therefore, to limit the likelihood of overfitting and inaccu-
racy, the tree size should be determined via cross-validation (Choi et al., 2020).

This study used fine tree regression and ensemble boosting regression to train the ML model. The correspond-
ing DTs were compared with other models to find a suitable DT for reconstructing missing data at the analyzed 
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station. Each DT is composed of an initial point (root) and an ultimate point (leaf) in tree form (Saghafi & 
Arabloo, 2017). The main tuning hyperparameter in DTs is the minimum leaf size. Leaf size was used to train 
the DT-based ML model, while trees were used to search for the optimal result (Krzywinski & Altman, 2017).

3.2.2.  Gaussian Process Regression

The GPR paradigm is a probabilistic non-parametric kernel model (Rasmussen & Williams, 2006). The GP is a 
potential algorithm for calculating the ideal distribution of flexible and malleable regression and classification 
modeling techniques that are not restricted to basic parametric forms (Weir et al., 2019). Furthermore, one of 
the GPR's advantages is its wide range of covariance coefficients. Notably, functions with varying degrees of 
smoothness or other kinds of contiguous structures may be employed. This enables the user to make an acceptable 
choice (Rasmussen & Nickisch, 2010). Furthermore, GPR models may determine the distributions of functions 
using one or more input parameters (Rasmussen & Williams, 2006). When such functions are used to calculate 
the average response of the regression model with Gaussian error, the related matrix computations may be modi-
fied for inference; this technique is useful for training datasets with a large number of samples (Neal, 1997; Weir 
et al., 2019).

In detail, GPR analyses the training database 𝐴𝐴 {(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) ; 𝑖𝑖 = 1, 2, ..., 𝑛𝑛} , in which 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ 𝑅𝑅
𝑑𝑑 and 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ 𝑅𝑅 ; both factors 

were selected from an undefined population. GPR models estimate values of the response parameter 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 based 
on the new input variable 𝐴𝐴 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 and the training database. The corresponding linear equation is expressed as 
follows (Rasmussen & Williams, 2006):

𝑦𝑦 = 𝑥𝑥
𝑇𝑇
𝛽𝛽 + 𝜀𝜀𝜀� (5)

where the error term ε ∼ N(0, σ 2), the predictor observation N, the error variance σ 2, and the coefficient β are 
determined from the database.

Moreover, the GPR model's building blocks include a GP that uses a random variable to convert objective func-
tions (Rasmussen & Williams, 2006). Therefore, a Gaussian second-order statistic is established, and the new 
form of the GP is as follows:

� (�) ∼ ��
[

�(�), �
(

�, �′)]� (6)

in which m(x) and �(�, �′) are the mean and covariance functions, respectively.

The predicted observation values are the same as those obtained with Equation 5, but the corresponding vari-
ances depend on the noise in the observation set (Weir et al., 2019). To convert GPR to a covariance function, 
Equation 6 is implemented for all plausible compositions of points, and the result is rewritten in three matrices 
(Rasmussen & Williams, 2006):

�(�,�) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�(�1, �1) �(�1, �2)⋯ �(�1, ��)

�(�2, �1) �(�2, �2)⋯ �(�2, ��)

⋮ ⋮ ⋮

�(��, �1) �(��, �2)⋯ �(��, ��)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� (7)

To optimize the GPR training models, k(x,x′) is normally parameterized using a group of kernel parameters (θ), 
known as tuning hyperparameters. k(x,x′) is denoted as k(x,x′|θ) to explicitly specify the dependence on θ (Sun 
et al., 2014). Hence, θ and ε in Equation 5 are the major tuning hyper-parameters in this paper.

3.2.3.  Support Vector Regression

SVR, first developed by Vapnik (2013), has been extensively applied for classification and prediction in many 
research domains. The basic equation in SVR is as follows:
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𝑓𝑓 (𝑥𝑥) = 𝜔𝜔
𝑇𝑇
𝜙𝜙(𝑥𝑥) + 𝑏𝑏𝑏� (8)

in which ϕ is a mapping function with a weight of ω and b is a scalar. T is the inner product/dot product parameter 
of the hyperplane equation. The widely used regression form of SVR, ε-SVR, was applied in this paper. Consid-
ering Ns training samples, the ordinary formula for ε-SVR is provided by Vapnik (2013):

min
�,�,�,�∗

1
2
��� + �

��
∑

�=1

(

�� + �∗�
)

� (9)

Subject to 𝐴𝐴 𝐴𝐴
𝑇𝑇
𝜙𝜙 (𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖,

𝑦𝑦𝑖𝑖 − 𝜔𝜔
𝑇𝑇
𝜙𝜙 (𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉

∗

𝑖𝑖
,�

𝜉𝜉𝑖𝑖, 𝜉𝜉
∗

𝑖𝑖
≥ 0, 𝑖𝑖 = 1, 2, ......, 𝑁𝑁𝑠𝑠,�

where C is used to signify the penalized variable, and ξi and 𝐴𝐴 𝐴𝐴
∗

𝑖𝑖
 are the slack variables, which specify the upper and 

lower bounds, respectively, of the training errors, considering the error tolerance ε (Chen & Pawar, 2019). The 
optimization problem in Equation 9 can be handled with the aid of a collection of Lagrange multipliers: αi and 𝐴𝐴 𝐴𝐴

∗

𝑖𝑖
 

(Chen & Pawar, 2019; Schölkopf & Smola, 2002). By adopting a typical quadratic programming technique, this 
process allows the optimization issues to be addressed quickly in dual format (Shevade et al., 2000). As a conse-
quence, the second equation utilized to solve the SVR optimization problem is as follows (Chen & Pawar, 2019; 
Schölkopf & Smola, 2002; Shevade et al., 2000):

min
��,�∗�

1
2

��
∑

�,�=1

(

�� − �∗
�

) (

�� − �∗
�

)

�(��, ��) + �
��
∑

�=1

(

�� + �∗
�

)

+
��
∑

�=1

��
(

�� − �∗
�

)

� (10)

subject to 𝐴𝐴
∑𝑁𝑁𝑠𝑠

𝑖𝑖=1

(

𝛼𝛼𝑖𝑖 − 𝛼𝛼
∗

𝑖𝑖

)

= 0,

0 ≤ 𝛼𝛼𝑖𝑖, 𝛼𝛼
∗

𝑖𝑖
≤ 𝐶𝐶𝐶𝐶𝐶  = 1, 2, ..., 𝑁𝑁𝑠𝑠,�

where K(xi, xj), the kernel function, is the inner product of ϕ (xi) and ϕ (xj). The linear kernel, the polynomial 
kernel, the radial basis function (RBF) kernel, and the hyperbolic tangent kernel are all frequently used kernel 
functions. In this research, the SVR model was trained using the RBF kernel, as follows (Chen & Pawar, 2019; 
Schölkopf & Smola, 2002):

(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) = exp
(

−𝛾𝛾‖𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗
2

2
‖

)

, 𝛾𝛾 𝛾 0� (11)

By using αi and 𝐴𝐴 𝐴𝐴
∗

𝑖𝑖
 , the predictive model is expressed as follows (Chen & Pawar, 2019):

∧
� (�) =

∑��

�=1
(−�� + �∗

� )�(��, �) + �� (12)

The matrix for the nonnegative module of (−αi + 𝐴𝐴 𝐴𝐴
∗

𝑖𝑖
 ), where i = 1, 2, …, Ns, is referred to as the linear kernel. The 

SVR model can output all the support vectors if an input x is given. In this study, the three tuning hyperparameters 
C, γ, and ε were used to optimize the predictive models, and default values were used for all the variables.

3.2.4.  Random Forest

RF is a classification and regression technique based on DT (Breiman, 2001). RF regression is also characterized 
as an ensemble-based ML technique that generates a set of input variables (known as training datasets and predic-
tions) to create numerous regression trees. These trees can be merged to provide more precise and reliable results 
(Liaw & Wiener, 2002). Moreover, each DT regression in the ensemble is trained utilizing bootstrap samples or 
a sampling bag from the training data set to ensure that it performs well. Ultimately, each tree node is divided 
using binary splits based on a selection of randomly chosen predictors, with each split resulting in a different 
outcome (Liaw & Wiener, 2002). The RF method generates various independent DTs, which are described as 
follows (Breiman, 2001):
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ℎ� (�) =
1

���

∑�

�=1
ℎ�(�)� (13)

where hi(x) is a DT and NDT is defined as the total number of DTs.

The number of DTs in the forest (N_Est) serves as one of the tuning hyperparameters in the optimum RF model, 
while the maximum depth of DTs (Max_D) and number of features are used to search for the best split (Max_F) 
(Kim & Shin, 2020).

3.2.5.  Least Square Support Vector Machine

The LSSVM model is regarded as a more straightforward variant of the SVM regression model (Suykens & 
Vandewalle, 1999) and is more flexible than the original SVM method. Moreover, instead of utilizing quadratic 
programming to tackle regression problems, it is beneficial to determine a linear set of equations using a support 
vector to solve them more rapidly (Suykens et al., 2002).

A target training data set is determined as {xk, yk}, k = 1, 2, …., N, in which 𝐴𝐴 𝐴𝐴𝑘𝑘 ∈ 𝑅𝑅 stands for the kth input 
data; 𝐴𝐴 𝐴𝐴𝑘𝑘 ∈ 𝑅𝑅 is the output parameter for the given input parameter; and N is the amount of data trained (Ahmadi 
& Ahmadi,  2016). By considering the nonlinear function 𝐴𝐴 𝐴𝐴(.) , the following regressed equation is generated 
(Suykens & Vandewalle, 1999):

𝑦𝑦 = 𝜔𝜔
𝑇𝑇
𝜑𝜑(𝑥𝑥) + 𝑏𝑏� (14)

in which 𝐴𝐴 𝐴𝐴 is a weight vector; 𝐴𝐴 𝐴𝐴(𝑥𝑥) is the nonlinear function; T depicts the transpose of the matrix; and b denotes 
the bias parameter. According to Equation 14, this nonlinear function plots the input data set x into the n-infinite 
feature space (Vong et al., 2006). When the LSSVM is used, it introduces a unique optimizing case. The approach 
adopted tackles the following optimization issue:

min
�, �, �

�(�, �) = 1
2
��� + 1

2
�

�
∑

�=1

�2�� (15)

Equation 15 considers the following equality constraint:

� = ���(��) + � + �� � = 1, 2...., �� (16)

in which 𝐴𝐴 𝐴𝐴 represents the model parameters and takes into account the model's complexity and the training error 
(Mehdizadeh & Movagharnejad, 2011); 𝐴𝐴 𝐴𝐴𝑘𝑘 indicates the error in the regression. The Lagrangian is constructed in 
the following manner to seek a resolution to the unbounded optimization problem:

�(�, �, �, �) = �(�, �) −
�
∑

�=1

��
{

��� (��) + � + �� − ��
}

� (17)

in which 𝐴𝐴 𝐴𝐴𝑘𝑘 denotes the Lagrange multiplier or supporting value. In obtaining a solution for Equation 17, the 
transformation of the equation in terms of 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝑘𝑘, 𝛼𝛼𝑘𝑘 is described as follows:

��(�, �, �, �)
��

= 0 → � =
�
∑

�=1

���(��)� (18)

𝜕𝜕𝜕𝜕(𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔)

𝜕𝜕𝜕𝜕
= 0 →

𝑁𝑁
∑

𝑘𝑘=1

𝛼𝛼𝑘𝑘 = 0� (19)

𝜕𝜕𝜕𝜕(𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔𝜔 𝜔𝜔)

𝜕𝜕𝜕𝜕𝑘𝑘
= 0 → 𝛼𝛼𝑘𝑘 = 𝛾𝛾𝛾𝛾𝑘𝑘, 𝑘𝑘 = 1, 2, ..., 𝑁𝑁� (20)

��(�, �, �, �)
���

= 0 → �� = �(��)�� + � + ��, � = 1, 2, ..., �� (21)

When the parameters ω and e are removed, the Karush–Kuhn–Tucker system can be obtained as follows:



Water Resources Research

THANH ET AL.

10.1029/2021WR031048

11 of 24

[

0

1𝜐𝜐

1
𝑇𝑇

𝜐𝜐

Ω + 𝛾𝛾−1𝐼𝐼
]

[

𝑏𝑏

𝛼𝛼

]

=

[

0

𝑦𝑦

]

� (22)

In Equation 22, 𝐴𝐴 𝐴𝐴 = [𝑦𝑦1.....𝑦𝑦𝑁𝑁 ]
𝑇𝑇 ; 𝐴𝐴 1𝑁𝑁 = [1........1]

𝑇𝑇  ; 𝐴𝐴 𝐴𝐴 = [𝛼𝛼1.....𝛼𝛼𝑁𝑁 ]
𝑇𝑇  ; I is the identity matrix.

Ω� = �(��)� .� (��) = �(��, ��) ∀�, � = 1, 2, ...� ; �(��, ��) is the kernel function that must satisfy Mercer's 
condition (Li et al., 2008). Three options are available for the kernel function:

�(�, ��) = ��
� �� (23)

�(�, ��) =
(

� + ��
� �

)�� (24)

�(�, ��) = exp
(

−� − �2
�∕�

2)� (25)

Based on the above three options, the following is a description of the latest part of the LSSVM algorithm for 
parameter estimation:

�(�) =
�
∑

�=1

���(�, ��) + �� (26)

where τ denotes the slope; d represents the degree of the polynomial; σ 2 denotes the kernel sample variance; (b, 
α) stands for the answer to the equations' linear system illustrated in Equation 22. In this study, σ 2 and 𝐴𝐴 𝐴𝐴 were 
considered to be the two main hyperparameters for tuning the LSSVM model. These two parameters are vital for 
obtaining the optimal prediction performance for daily discharge in mega deltas.

3.2.6.  Multivariate Adaptive Regression Splines

MARS is defined as non-parametric regression technique proposed by Friedman (1991). It can map nonlinearities 
and interactions between parameters. MARS creates a predictive model (𝐴𝐴 𝑓𝑓  ) via the following equation:

𝑓𝑓 (𝒙𝒙) =

𝑘𝑘
∑

𝑖𝑖=1

𝛼𝛼𝑖𝑖𝐵𝐵𝑖𝑖(𝒙𝒙)� (27)

where 𝐴𝐴 𝒙𝒙 represents the vector that includes all the input variables; 𝐴𝐴 𝐴𝐴𝑖𝑖 represents the basis functions; 𝐴𝐴 𝐴𝐴 denotes the 
number of basis functions defined by the regression function; and αi denotes the ith constant coefficient. Addition-
ally, each basis function 𝐴𝐴 𝐴𝐴𝑖𝑖(𝒙𝒙) considers one of the following constraints: (a) a single basis function has a constant 
value approximately equal to 1; (b) a hinge function; (c) at least two or multiple hinge functions. A hinge function 
is illustrated by 𝐴𝐴 max(0, 𝑥𝑥 − 𝑐𝑐) or 𝐴𝐴 max(0, 𝑐𝑐 − 𝑥𝑥) , in which 𝐴𝐴 𝐴𝐴 is a constant, namely, a knot (Chen & Pawar, 2019).

The utilization of hinge functions supports MARS by splitting the response surface into different continuous 
areas. MARS constructs a model in two stages with forward and backward processes. MARS begins with a 
model that comprises the single basis function of 1. Then, MARS frequently includes paired basis functions for 
the available basis functions. In each iteration step, it searches for the pair of basis functions that minimizes the 
sum-of-squares residual error (SSRE), which is defined as follows (Friedman, 1991):

SSRE =
��
∑

�=1

(

�� − �̂ (��)
)2

� (28)

in which 𝐴𝐴 𝐴𝐴𝑠𝑠 denotes the number of training points; 𝐴𝐴 𝐴𝐴𝑖𝑖 is the ith output achieved from training datasets; and xi are 
the ith input variables of training points. The added terms repeat until the change in the residual error is less than 
a target value or the maximum allowable term value is obtained. The forward process often creates an overfit 
model. To prevent overfitting, a backwards process is implemented to shape the ML model. The model extracts 
one less effective term in a paired basis function at each step until the best sub-model is obtained. The term choice 
to be removed is based on the minimum value of the generalized cross validation (GCV). The GCV is defined 
as follows:
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��� = SSRE
�� ∗ (1 −��∕��)� (29)

where 𝐴𝐴 𝐴𝐴𝑒𝑒 indicates the number of effective terms. The backwards process permits the MARS method to build a 
model that integrates the good fit and model parsimony criteria. According to Friedman (1991), if MARS is given 
an input x, it can produce all the basis functions, 𝐴𝐴 𝐴𝐴𝑖𝑖(𝒙𝒙) , and their corresponding coefficients, 𝐴𝐴 𝐴𝐴𝑖𝑖 . In this study, the 
maximum number of terms and max_degree was the two main tuning hyperparameters, and all the remaining 
parameters were set to the default values.

3.2.7.  K-Fold Cross Validation and Grid Search Process for Hyperparameter Tuning

The data set was separated into two subsets (training [70%] and testing [30%]) to develop the DT, GPR, SVR, 
RF, LSSVM, and MARS models. These ML models can be adjusted by varying the hyperparameters that control 
model performance. First, the training data were subjected to k-fold cross-validation (k-FCV) to determine the 
optimal hyperparameters (Markatou & Hripcsak, 2005). The training samples were subdivided into k subsets: 
k−1 sets were used to train the models. The kth parameter was employed to assess the performance of the hyper-
parameters based on the validation data. For each candidate hyperparameter, the procedure was repeated k times. 
Then, the goodness of fit of the ML models was estimated based on four statistical indicators for the training 
and validation datasets, namely, the root mean square error (RMSE), correlation coefficient (r), Nash-Sutcliffe 
number (NSE), and mean absolute error (MAE).

The grid search (GS) process creates groups for all compositions of values based on the prescribed search extent 
of hyperparameters and assesses each group using k-FCV (Kanin et al., 2019). The lowest RMSE and MAE or 
the highest r and NSE help to decide the optimum hyperparameter values. The RMSE, r, NSE, and MAE were 
computed as follows:

RMSE =

√

√

√

√

1
�

�
∑

�=1

(��,� − ��,�)2� (30)

𝑟𝑟 =

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

(𝑌𝑌𝑖𝑖𝑖𝑖𝑖 × 𝑌𝑌𝑖𝑖𝑖𝑖𝑖) −

𝑛𝑛
∑

𝑖𝑖=1

𝑌𝑌𝑖𝑖𝑖𝑖𝑖

𝑛𝑛
∑

𝑖𝑖=1

𝑌𝑌𝑖𝑖𝑖𝑖𝑖

√

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

𝑌𝑌𝑖𝑖𝑖𝑖𝑖
2
−

(

𝑛𝑛
∑
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𝑌𝑌𝑖𝑖𝑖𝑖𝑖
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√

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

𝑌𝑌𝑖𝑖𝑖𝑖𝑖
2
−

(

𝑛𝑛
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𝑌𝑌𝑖𝑖𝑖𝑖𝑖
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� (31)

NSE = 1 −
∑�

�=1 (��,� − ��,�)2

∑�
�=1

(

��,� − � �,�

)2� (32)

MAE =
∑�

�=1 |��,� − ��,�|

�
� (33)

In these equations, Yi,m, Yi,e, and n are the observed discharge, predicted discharge, and total number of observa-
tions, respectively. RMSE is the difference between the simulated and measured values. r expresses the agreement 
between the simulated and observed values. NSE represents how well the simulated data match the corresponding 
observed values. MAE measures the errors between the predictions and the observations.

4.  Results and Discussion
4.1.  Selection of the Optimization Models

The proposed ML models require many tuning hyperparameters to train the data set. Some of these variables 
are important for achieving satisfactory model performance; therefore, they must be defined appropriately. To 
evaluate the ML model performance in reconstructing the daily-averaged discharge, k-FCV and GS processes 
were applied to achieve the optimal hyperparameter values for the DT, GPR, SVR, RF, LSSVM, and MARS 
models. In the GS process, the search range was divided into 30 grid divisions, and each grid division was then 
assessed using k-FCV. In this work, 10-fold cross-validation was selected for ML model optimization. Then, 
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the GS process was used to determine the minimum MSE for all six ML models based on the specific ranges 
of parameters. Table 1 provides detailed descriptions of the variables employed in training the six ML models.

The DT model was first examined by the GS process. Leaf size was used as the key tuning parameter. As shown 
in Table 1, the optimal leaf size was 40, and the DT model achieved the best prediction performance at this leaf 
size. Next, the GPR model was employed to evaluate the prediction ability for the daily discharge. This study 
used θ and ε to achieve the best estimating outcome of the GPR scheme. The best values of θ and ε were 12,100 
and 68,500, respectively. The computational time to achieve the optimal tuning parameter of the GPR model 
was quite long because of the complex mathematical functions. Regarding the SVR model, three tuning param-
eters were used to achieve the desired predictive performance. Table 1 highlights the optimal values for various 
hyper-parameters. As previously mentioned, SVR can produce quick predictions to obtain the optimal tuning 
parameters. Following SVR, the RF model was applied to predict daily discharge at the Tan Chau station. N_Est, 
Max_D, and Max_F were used for the tuning process of the RF. The optimum values for the parameters were 310, 
60, and 0.96, respectively. The computational time of the GS process for RF to achieve the optimal values for the 
three tuning parameters was also relatively short.

Furthermore, this study adopted advanced LSSVM and MARS approaches to validate the most robust ML models 
and reconstruct the daily-averaged discharge in the mega delta. According to the LSSVM model, σ 2 and γ are 
the two key parameters for the tuning process. The computational cost of the LSSVM model was high compared 
to that of the prior four evaluated ML models. In addition, the MARS model was also used for the comparison. 
As mentioned earlier in ML theory, max-terms and max_degree were employed to determine the best prediction 
performance of the MARS model. By tuning these two parameters using the GS process, the optimal outcome of 
the MARS method to predict daily-averaged discharge at the Tan Chau station was achieved.

4.2.  What Models Are Recommended?

Here, we present a comparison of the results estimated by the ML and RC models in reconstructing the missing 
values of the daily-averaged discharge. Generally, all ML models were superior to the RC model, as indicated by 
the time series comparison, statistical indicators (r, RMSE, NSE, MAE, and percentile values in the violin plots), 
and percentage differences in the peak discharge (Figures 3–5; Table 2). These results suggest that ML models 
are applicable for simulating the hydrology of the VMD. On the basis of the MI and correlation coefficients in the 

Model Adjusted hyperparameters Specific search range Optimal values of hyperparameters Input Output

DT Leaf Size 1–3,115 40 WKt−1 Daily discharge at Tan Chau

GPR θ 57–57,000 12,100 WKt−2

ε 0.001–69,055 68,500 WPt

WPt−1

SVR C 0.001–1,000 930 WPt−2

γ 0.01–2,000 960 *WK: water level at

ε 10–9,000 2,300 Kratie

RF N_Est 100–500 310 *WP: water level at

Max_D 10–100 60 Prek Kdam

*t is the time, and t-1

and t−2 are the 1- and

Max_F 0.5–1.0 0.96 2-day lagged times

LSSVM σ 2  0.1–10 0.5

γ 5–100 10

MARS Max-terms 500–2,000 1,000

Max_degree 100–1,000 300

Table 1 
The Variables Used in the ML Models
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data pre-processing, the effect of the flow at Prek Kdam on the flow at Tan Chau was found to be faster than the 
corresponding effect at Kratie by 1 day; in other words, the flow at Prek Kdam influenced the flow at Tan Chau 
sooner than the flow at Kratie. This difference is physically explained by the distance from Tan Chau to Prek 
Kdam (∼144 km), which is much shorter than that from Tan Chau to Kratie (∼316 km). This result confirms the 
importance of Tonle Sap Lake in regulating flows in the VMD, as also noted in previous research (e.g., Pokhrel 
et al., 2018).

The RC method produced the worst values of the statistical indicators (e.g., RMSE up to 2,438 m 3/s in the train-
ing period) and the lowest accuracy in flood peak simulation (e.g., the flood peak was underestimated by −31% 
and −11.1% for the training and test datasets, respectively) (Table 2; Figures 3–5). A time series plot (Figure 3a) 
shows that the RC significantly underestimates the flood flow and overestimates the dry flow relative to the 
observed data. The underestimation of the flood peak is remarkably large in dry years, for instance, in 2010 (by 
−11.1%) and 1993 (by −7%) (Figure 5a). In flood months, the NSE values are very low (0.154 in the training 
and 0.523 in the testing periods) and are much lower than the respective values acquired from all the ML models 
(Table 2). The goodness of the predictions in the dry months from the RC is even lower than that in flood months 
(NSE = −0.77 and −2.64; r = 0.691 and 0.655; RMSE = 1,599 and 1,744 m 3/s in the training and testing periods, 
respectively). Furthermore, Figures 4 and 5a clearly show the poor performance of the RC model compared to 
all six ML models.

Figure 3.  Results of the six machine learning (ML) and rating curve (RC) models for the testing data set. (a) Time series comparison between the predicted and 
measured values. (b–f) Scatter plots of the predicted versus measured values of individual ML and RC models, with the bisector line (1:1) shown.
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These results indicate that the RC model based on year-round data alone cannot provide accurate reconstructions 
because of seasonal effects, which result in different hydrological behavior. To enhance the goodness of fit of 
the RC method, Moftakhari et al. (2015) established two RCs to predict the discharge of the Sacramento River 
by dividing the water level data into two subsets (i.e., <6.2 and >6.2 m) to account for seasonal effects. Binh, 
Kantoush, et  al.  (2021) revealed a clockwise hysteresis relation between the discharge and water level in the 
VMD, suggesting that RCs for rising and falling limbs should be developed differently. In the VMD, the flow 
characteristics in the rising and falling limbs are completely different: the former is controlled by riverine flood 
waves from upstream and the latter is strongly influenced by tides. RC is strongly influenced by the evolution 
of river geometry (i.e., erosion and deposition) and roughness (e.g., vegetation, infrastructure) and the effects of 
backwater and tides (Matte et al., 2018). Under the fluctuational tidal influence induced by oceanic and astronom-
ical forcing (Jay et al., 2011; Moftakhari et al., 2013), a discharge magnitude does not yield a unique water level; 
rather, different water level values can be recorded (Hoitink & Jay, 2016). Specifically, because of the interactions 
among the reversing tidal flow, the tidal Stokes drift, spring-neap tidal cycle, lateral and estuarine circulations, 
the occurrence of multiple branches, and nonlinear frictional interactions between riverine flow and oceanic tides 
(Moftakhari et al., 2016), a hysteresis phenomenon is typically involved in the tidal process, in addition to many 
other hydrologic processes, as reported by Nourani, Parhizkar, et al. (2014). Due to this hysteresis behavior and 
loop, different outputs are possible for the same input; therefore, the RC method, which uses an injective function 
and a linear regression model, is not sufficiently robust to handle such nonlinear and complex problems. The 
above-mentioned phenomena are the root causes of the low prediction accuracy of the RC. To handle such issues, 
in the ML models established in this study, we used the data from multiple upstream gauges, as suggested by 
Moftakhari et al. (2016). We also used time-series data in the ML models to account for the temporal sequences 
involved in the data. This inclusion improved the modeling performance compared to that of RCs, which do not 
consider temporal data as an input. The complex hysteresis phenomenon involved in the tidal flow process can be 
robustly handled by the nonlinear artificial intelligence-based methods used in this study, as noted by Nourani, 

Figure 4.  Taylor diagrams indicating the performance of six machine learning (ML) and rating curve (RC) models using the 
data from (a) year-round, (b) flood months, and (c) dry months.
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Parhizkar, et  al.  (2014). Moreover, the use of RCs requires an extensive understanding of flow behavior and 
input data because both discharge and water level information from the same station are used; any misuse of the 
input data could directly lead to large discrepancies in the output. This influence is negligible in ML methods. 
Additionally, lag time must be considered in the ML models when water flows in the river from upstream to 
downstream, while this lag is ignored in the RC model. Moreover, ML models account for upstream-downstream 
relations and consider physical relations in addition to hydrological processes.

Among the ML models considered for the training data set, GPR and SVR perform better than the RF, DT, 
LSSVM, and MARS models in terms of statistical indicators (Table 2). For instance, the RMSE of GPR and SVR 
using year-round data is 389 and 476 m 3/s, respectively, compared to 1,037 and 973 m 3/s for the DT and MARS 
models, respectively. However, the MARS and RF models showed the best performance in the testing period, 
with the highest r and NSE values (e.g., r = 0.994 for both the MARS and RF models compared to 0.988 for the 
LSSVM model and 0.992 for the DT model using year-round data) and the lowest RMSE and MAE values (e.g., 
RMSE = 768 m 3/s for the MARS model and 789 m 3/s for the RF model compared to 943 m 3/s for the SVR model 
and 1,098 for the LSSVM model considering the year-round data). Table 2 also shows the superior operation of 
the MARS and RF methods in both flood and dry months over the remaining four ML models with regard to all 
four statistical metrics.

The outstanding performance of the MARS and RF models over the other ML models can be clearly seen in the 
scatter plots (Figures 3b and 3g), Taylor diagrams (Figures 4b and 4c), and violin plots (Figure 5b). The scatter 
plots show that a majority of the scatter points using MARS and RF are concentrated around the bisector 1:1 
line. Likewise, the Taylor diagrams point to the superior performance of the MARS and RF models because 
their results were the closest to the observed values. Based on the Taylor diagram, the LSSVM showed the worst 
performance, followed by the DT model because their results are the farthest from the observed points. This 
finding is confirmed by the NSE indicator shown in Table 2; for instance, the NSE values of the LSSVM and DT 
models were 0.528 and 0.676 in the dry months, respectively. Regarding the time series comparison (Figure 3a), 
the MARS and RF results effectively agree with the observed data. The SVR model produced unreasonable 

Figure 5.  (a) Heatmap showing the percentage differences in the flood peaks predicted by the machine learning (ML) 
and rating curve (RC) models relative to the observed data. (b) Violin plots showing the goodness of fit of the predicted 
discharges versus the observed values. These plots are based on the data from the testing period.
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fluctuations in the discharge in the flood months; moreover, the DT model was unable to reliably reconstruct the 
discharge in the dry months. Another important indicator of discharge reconstruction is the flood peak, which has 
significant implications for flood management. All six ML models generally underestimated the flood peak, for 
instance, by −12.5% in 1990 using the LSSVM model; additionally, the GPR and SVR models overestimated the 
flood peak by up to 11% and 15.6% in 1987, respectively (Figure 5a). In flood years (e.g., 1996, 2000, and 2011), 
the RF and GPR models performed better than the SVR and DT models for the training data set, while the GPR 
and DT models performed better than the RF and SVR models for the testing data set. However, in drought years 
(i.e., 1993, 1998, 2005, and 2015), RF outperformed the other five ML models. For instance, the RF model under-
estimated the flood peak in 2010 by only −0.7%, while the DT model underestimated it by −4.2% (Figure 5a). 
The underestimation of the flood peaks, particularly in the extreme flood (e.g., 2000) and drought years (e.g., 
2015), by the ML models was attributed to the limited data used to train the models. Underestimation of predicted 
flood peaks is common in hydrological modeling for both types of hydrological models (Tegegne et al., 2017; 
Vansteenkiste et al., 2014) and ML algorithms (Adnan et al., 2020; Tencaliec et al., 2015).

A comparison of the predicted and observed values using the time series plots, scatter plots, Taylor diagram, 
violin plots, heatmap, and statistical indicators reveals that the MARS and RF models most reliably reconstructed 
the daily-averaged discharge at Tan Chau (Figures 3–5; Table 2), although the performance of MARS was slightly 
better than that of RF. Thus, the MARS and RF models are recommended for daily-averaged discharge recon-
struction in tidally affected river systems such as that in the VMD. This finding agrees with those of previous 
research that used ML models to assess hydrological processes (e.g., Hussain & Khan, 2020; Jeihouni et al., 2020; 
Li et al., 2016; Obringer & Nateghi, 2018). For instance, Obringer and Nateghi (2018) verified that the RF model 
was the best model among nonparametric ML algorithms in predicting riverine water levels. The GPR model is 
also trustworthy for reconstructing the discharge in tidally affected rivers. Notably, the DT model is not recom-
mended in this study based on the abnormal and unreasonable fluctuations in the time series results, especially in 
dry months, compared to the measured data. In this study, we used individual ML models to reconstruct the miss-
ing discharge values. However, using a hybrid model by combining an ML model with an analytical, empirical 
or numerical model may improve the performance, and this research direction will be examined in future work. 

Model

Year round Flood months Dry months

r RMSE NSE MAE r RMSE NSE MAE r RMSE NSE MAE

Training

  RF 0.996 602 0.992 412 0.965 695 0.931 528 0.978 251 0.956 193

  GPR 0.998 389 0.997 273 0.988 399 0.977 286 0.976 263 0.952 202

  DT 0.989 1,037 0.977 802 0.914 1,209 0.792 1,008 0.934 625 0.729 538

  SVR 0.997 476 0.995 315 0.977 573 0.953 410 0.984 210 0.969 158

  LSSVM 0.996 560 0.993 399 0.975 583 0.951 432 0.981 229 0.963 172

  MARS 0.99 973 0.980 708 0.936 928 0.877 754 0.959 341 0.919 264

  RC 0.954 2,087 0.91 1,629 0.841 2,438 0.154 2,026 0.691 1,599 −0.77 1,405

Testing

  RF 0.994 789 0.988 517 0.928 978 0.86 722 0.961 264 0.917 200

  GPR 0.992 878 0.985 533 0.919 1,056 0.837 748 0.944 313 0.884 234

  DT 0.992 886 0.985 659 0.929 1,082 0.829 815 0.939 522 0.676 454

  SVR 0.991 943 0.983 588 0.901 1,160 0.804 845 0.961 274 0.911 206

  LSSVM 0.988 1,098 0.977 747 0.826 1,497 0.673 1,059 0.818 631 0.528 426

  MARS 0.994 768 0.989 544 0.942 872 0.889 646 0.96 257 0.921 198

  RC 0.968 1,851 0.937 1,517 0.858 1,807 0.523 1,469 0.655 1,744 −2.64 1,578

Note. The models were built using year-round data; however, statistical indicators are also shown for the flood and dry 
months to highlight the performance of the individual models. The flood months are from August to October, and the dry 
months are from February to April. Time lag was not considered in the RC model. The unit of the RMSE and MAE is m 3/s.

Table 2 
Statistical Indicators for the Six ML and RC Models
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For instance, Safari (2020) found that the hybridization of the MARS and RF models with the empirical MNLR 
provides better predictions of incipient sediment deposition compared to the individual MARS and RF models.

4.3.  Is Prediction Accuracy Increased by Considering Seasonal Patterns?

Binh, Kantoush, et al. (2021) found that separately constructing stage-discharge RCs for the rising and falling 
limbs can improve the reconstruction of the missing daily-averaged discharge in the VMD. Therefore, in this 
section, we attempt to apply the MARS and RF models in assessments of these two limbs to determine whether 
the prediction accuracy is enhanced. This approach also reduces the computational time and the effort required to 
collect data if the research focus is in flood or drought seasons.

Comparison of Figures  6 and  7 with Figures  3–5 along with statistical indicators (Table  2) reveals that the 
MARS and RF models established for the rising and falling limbs separately do not improve the prediction 
accuracy compared to the results obtained using the year-round data; in fact, the accuracy decreases slightly. 
Specifically, the statistical indicators of the RF model from the falling phase in the testing period (r = 0.987, 
RMSE = 1,040 m 3/s, NSE = 0.973, MAE = 742 m 3/s) are lower than those obtained using the year-round data 
(r = 0.994, RMSE = 789 m 3/s, NSE = 0.988, MAE = 517 m 3/s). Similarly, the corresponding values of the MARS 
model are r = 0.991, RMSE = 856 m 3/s, NSE = 0.982, MAE = 485 m 3/s, while those from the year-round data are 
r = 0.994, RMSE = 768 m 3/s, NSE = 0.989, MAE = 544 m 3/s. In flood peak prediction, however, the accuracy of 
the MARS and RF models considering seasonal patterns improves slightly compared to that in the original case. 
For instance, relative to the measured data, the mean predicted flood peaks in the test period of MARS and RF 
are underestimated by −1.4% and −1.1%, respectively, when seasonal patterns are considered and by −1.9% and 
−2%, respectively, when year-round data are used. The unexpected lack of improvements in the MARS and RF 
models for the rising and falling limbs is likely because of the reduction in the number of data points used (∼50% 
reduction). The above results, together with the Taylor diagrams (Figures 6b and 6c) and the scatter and violin 

Figure 6.  (a) Time series plot comparing the predicted discharge from multivariate adaptive regression spline (MARS), 
random forest (RF), and rating curve (RC) models with the observed data. (b, c) Taylor diagrams showing the performance of 
the three models in the rising and falling phases.
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plots (Figure 7), demonstrate that MARS is marginally better than RF. We also observed that the accuracy of 
MARS and RF in predicting the discharge in the rising phase was greater than that in the falling phase.

In contrast, the RCs that were separately developed for the rising and falling limbs enhanced the prediction 
accuracy substantially compared to those based on the year-round data. For example, in the test period, the 
performance of the RC model considering seasonal patterns (e.g., r = 0.975, RMSE = 1,427 m 3/s in the falling 
limb) was improved relative to that of the model using the year-round data (e.g., r = 0.968, RMSE = 1,851 m 3/s). 
Although improved, the results of the RC model are still inferior to those of the MARS and RF models, particu-
larly for the rising limb (Figures 6 and 7).

In short, there are two main implications drawn from the above results. First, although using separate RCs for 
the rising and falling limbs can improve the prediction accuracy compared to those based on year-round data, the 
MARS and RF models still outperformed the RC model. However, if only the water level at a station at which 
the discharge needs to be reconstructed is available, RCs considering seasonal patterns can produce acceptable 
results. Second, the MARS and RF models that were separately established for the rising and falling limbs should 
be used with care, especially for the falling limb, if the research interest is the flood or drought period alone.

4.4.  Prospects of Using ML in Hydrological Assessment in the Mekong River Basin

ML has been used by hydrologists to assess hydrological processes in many rivers worldwide, and its applications 
include rainfall (Alizadeh et al., 2017; Tikhamarine et al., 2020), streamflow (Luo et al., 2019; Zia et al., 2015), 
salinity (Tran et  al.,  2021), water quality (Elkiran et  al.,  2019; Imani et  al.,  2021), and sediment (Huang 
et al., 2019; Zounemat-Kermani et al., 2020) assessments. In tidally affected river systems, such as the Mekong 
River basin, the use of ML to explore hydrology and hydrological processes is limited. Notably, the use of ML 
to study hydrology is especially limited in the VMD, where data availability is a constraint for scientific research 
and resource management. Therefore, the use of ML in the VMD is recommended for (a) data reconstruction, 

Figure 7.  Predicted versus observed discharge values using the multivariate adaptive regression spline (MARS), random 
forest (RF), and rating curve (RC) models for the rising and falling phases. (a, b) Scatter plots with statistical indicators. (c, 
d) Violin plots comparing the results of the MARS, RF, and RC models with their observed counterparts for the rising and 
falling phases. All data plotted are from the test period. The MARS and RF models outperform the RC model.
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such as for tide, sediment, and salinity concentration data, and (b) hydrological and water quality prediction. We 
acknowledge that reconstructing salinity and sediment data is even more challenging than reconstructing river 
flows; thus, the latter is vital for the former and will be the focus of our future research. Such predictions have 
been made using statistical models (Apel et al., 2020). However, most predictions are medium-term estimates (up 
to 9 months), and appropriate and proactive water resource planning and management tasks require long-term 
predictions, especially considering variations in upstream inflows because of changes in dam management and 
climate change, downstream rising sea level and saline water instruction, and the increasing water demand within 
the delta (e.g., Binh, Kantoush, Saber, et al., 2020; Park et al., 2021, 2022). Therefore, ML methods are promising 
tools for gaining insight into hydrological processes and improving water resource management.

Flooding is an annual event in the VMD; however, extreme floods, such as the historical floods in 1996, 2000, 
and 2011, have appeared periodically and may cause disastrous damage to society (Triet et al., 2018). Therefore, 
flood prediction has an important role in flood preparedness. In the study of floods, it is crucial to predict flood 
water levels because it is the water level, not the discharge, that causes flood problems. In the tidally affected 
rivers in the VMD, the water level fluctuates remarkably under tidal effects within a day. Given the rapid evolu-
tion of flood water, it is necessary to predict hourly water levels instead of daily-averaged values, as was done 
in this study for the discharge reconstruction. Collectively, predicting the hourly flood water levels is even more 
challenging than predicting the daily-averaged discharge. As such, ML and RC models may yield undesirable 
predictions. Although challenging, we intend to develop a robust methodology using deep learning models to 
predict hourly flood water levels in the VMD in future studies, with the goal of helping the delta to prepare to 
cope with future flood disasters.

5.  Concluding Remarks
Six ML-based methods were employed in the present research to reconstruct the missing daily-averaged discharge 
in a tidal river system, the VMD. The missing historical data have limited studies of long-term flow regime vari-
ations under the effects of climate change and intensifying anthropogenic intervention, such as the construction 
of hydropower dams and irrigation expansion. We used multi-station data considering upstream-downstream 
relations, and the water level at two upstream stations in different geographical settings was used to reconstruct 
the discharge at a downstream station. While many studies have ignored data pre-processing when completing 
similar tasks, we performed it in three steps: first, the raw data were normalized to remove trends in variance and 
mean; second, the Fourier series were fitted to remove seasonal effects; and third, first-order differencing was 
conducted. Additionally, MI and correlation coefficient methods were applied to optimize the model inputs and 
avoid the use of too many simulation parameters; moreover, lagged data were considered, thereby reducing the 
simulation time and effort. The results of our study are important for long-term water resource management in 
the delta, and the methodology developed can easily be adopted for other river systems.

Unlike the traditional stage-discharge RC method using linear regression, ML models can provide reliable recon-
structions of the missing daily-averaged discharge. The water levels, with lagged time considerations, at Kratie 
and Prek Kdam are appropriate to input into the ML models. The present study provides a basis for hydrologists 
and researchers who plan to employ ML models for future water resource management in the VMD in the context 
of global warming. Our next step is to use ML to predict the discharge in the Mekong River from the short to the 
long term for optimal water resource allocation, particularly to enhance flood and drought preparedness.

The MARS and RF models are the two most suitable algorithms for reconstructing the missing daily-averaged 
discharge, although the MARS model performs slightly better than the RF model. These approaches can reliably 
predict flood peak, flood flow, and drought flow discharges and are therefore suitable for flood, drought and 
salinity intrusion studies. Compared to the RC method, the RF model reduces the RMSE and MAE by 135% and 
194% (year-round data), 85% and 104% (flood-month data), and 561% and 691% (dry-month data), respectively. 
The respective values for the MARS and RC models are 141% and 179% (year-round data), 107% and 127% 
(flood-month data), and 578% and 696% (dry-month data). Establishing MARS and RF models for the rising and 
falling limbs separately did not improve the prediction accuracy; however, acceptable results could be obtained 
for a specific flood or drought period. MARS and RF reconstruct the daily-averaged discharge in the rising phase 
better than in the falling phase. The GPR and SVR models are also appropriate for daily-averaged discharge 
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reconstruction in the delta. The DT model, however, is not recommended because it produces abnormal, unrea-
sonable fluctuations in the predicted discharge.

Since this paper is our first attempt to use ML models to estimate hydrological parameters in the VMD, we 
applied simple techniques to pre-process the input data. In future works, more advanced de-noising methods, such 
as the wavelet de-noising approach (Nourani, Baghanam, et al., 2014) or ensemble empirical mode decomposi-
tion (EEMD) (Gaci, 2016), are recommended for obtaining better performance in the application of ML models. 
Moreover, more advanced artificial intelligence models, such as deep learning neural networks (Ha et al., 2021), 
should be considered in the next attempt to forecast the discharge, sediment, and salinity in the VMD to support 
strategic decision making. The hybridization of ML models with other empirical, analytical or numerical models 
is also a good strategy to improve the prediction power of ML. Finally, our future work will focus on estimat-
ing the tidal water level and discharge on an hourly interval to quantify the net riverine and tidal flux exchange 
between rivers and seas.
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A B S T R A C T   

Flow, suspended sediment transport and associated morphological changes in the Vietnamese Mekong Delta 
(VMD) are studied using field survey data and a two-dimensional (2D) depth-averaged hydromorphodynamic 
numerical model. The results show that approximately 61–81 % of the suspended sediment load in the Hau River 
during the flood seasons is diverted from the Tien River by a water and suspended sediment diversion channel. 
Tidal effects on flow and suspended sediment load are more pronounced in the Hau River than in the Tien River. 
The results show the formation of nine scour holes in the Tien River and seven scour holes in the Hau River from 
2014 to 2017. Additional six scour holes are likely to form by the end of 2026 if the suspended sediment supply is 
reduced by 85 % due to damming. Notably, the scour holes are likely to form at locations of severe riverbank 
erosion. In the entire study area, the simulated total net incision volume in 2014–2017 is approximately 196 
Mm3 (equivalent to 65.3 Mm3/yr). The predicted total net incision volumes from 2017 to 2026 are approxi
mately 2472 and 3316 Mm3 under the 18 % and 85 % suspended sediment reduction scenarios, respectively, 
thereby likely threatening the delta sustainability. The methodology developed in this study is helpful in 
providing researchers and decision-makers with one way to predict numerically the scour hole formation and its 
association with riverbank stability in river deltas. Of equal importance, this research serves as a useful reference 
on the role of water and suspended sediment diversion channels in balancing landforms in river-delta systems, 
particularly where artificial diversion channels are planned.   

1. Introduction 

Sediments transported by rivers are the major sources of materials 
for protecting deltas from the natural processes of subsidence. However, 
sediment loads worldwide have been significantly reduced by climate 
change and anthropogenic activities (e.g., damming, mining, urbaniza
tion) (Maeda et al., 2008; Lu et al., 2015; Darby et al., 2016; Binh et al., 

2020b; Hackney et al., 2020; Park et al., 2022), causing detrimental 
impacts on landforms, aquatic environments, and salinity intrusion in 
river-delta systems (Kondolf et al., 2014a; Best, 2019; Eslami et al., 
2019; Binh et al., 2021; Loc et al., 2021). The Vietnamese Mekong Delta 
(VMD) is not an exception. 

The flow regime of the Mekong River, which is one of the largest 
river systems worldwide and most important food-producing regions in 
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Southeast Asia (Boretti, 2020), has been significantly altered (Lauri 
et al., 2012; Lu et al., 2014; Binh et al., 2018; Hecht et al., 2019; Binh 
et al., 2020a, 2020c), with the suspended sediment load (SSL) being 
substantially reduced (Kummu and Varis, 2007; Kondolf et al., 2014b; 
Binh et al., 2020b). Six mainstream dams in the Lancang cascade (upper 
Mekong basin) have reduced the SSL by 50–94 % along the lower 
Mekong River (Kummu et al., 2010; Kondolf et al., 2014b; Manh et al., 
2015), and sixty-four completed dams in the Mekong basin were 
responsible for a 74 % SSL reduction in the VMD (Binh et al., 2020b). 
Additionally, sand mining activities have accelerated in the VMD, 
jumping from 7.75 Mm3/yr in 2012 (Bravard et al., 2013) to 29.3 Mm3/ 
yr in 2018 (Jordan et al., 2019); these values are likely underestimated 
compared to an average volume of 42 Mm3/yr during 2015–2020 (Gruel 
et al., 2022) considering illegal mining activities. Overall, damming and 
sand mining have caused severe morphological degradation and salinity 
intrusion in the VMD (Anthony et al., 2015; Li et al., 2017; Mai et al., 
2018, 2019a, 2019b; Eslami et al., 2019; Jordan et al., 2019; Binh et al., 
2020d). 

Flow, suspended sediment transport, and morphodynamic processes 
in the VMD are not fully understood due to the hydrological and hy
draulic complexity of the system (i.e., seasonal interactions between 
fluvial flows and tidal currents) and scarcity of field data. While the 
delta covers an area of 39,000 km2, there are only five gauging stations 
that monitor flow and suspended sediments. Some studies analysed the 
flow and SSL at these stations (e.g., Dang et al., 2016; Ha et al., 2018; 
Binh et al., 2020a, 2020b, 2021), while other studies dealt with sus
pended sediment dynamics in some floodplain and coastal areas only (e. 
g., Wolanski et al., 1996; Hung et al., 2014a, 2014b). Large parts of the 
VMD is mostly unknown and its morphodynamics remains unexplored 
because the bathymetry has not been monitored regularly. 

Scour holes in tidal channels are formed at confluences (Rice et al., 
2008), outer banks of meandering channels or sand mining locations 
(Jordan et al., 2019; Hackney et al., 2020), under complex 

hydrosedimentary processes caused by the alternating flood/ebb of tidal 
currents (Ferrarin et al., 2018). Bedload is trapped in scour holes (Anh 
et al., 2022), which induces progressive (regressive) erosion far down
stream (upstream). Scour hole formation and evolution in the VMD are 
unexplored. Moreover, quantifying water and suspended sediment 
interchange between the two main rivers (Tien and Hau Rivers) via the 
Vam Nao diversion channel has not been adequately assessed at the 
monthly or seasonal scales. 

To overcome the scarcity of measurements, remotely sensed satellite 
data have been employed (Loisel et al., 2014; Dang et al., 2018) and 
numerical models have been applied to simulate hydrodynamics 
(Wassmann et al., 2004; Van et al., 2012) and suspended sediment dy
namics (Xue et al., 2012; Hein et al., 2013; Manh et al., 2014, 2015; Vinh 
et al., 2016; Thanh et al., 2017; Xing et al., 2017; Tu et al., 2019; Le, 
2020). Xing et al. (2017) found numerically that sand is exported from 
and imported into the lower Hau River in the high-flow and low-flow 
seasons, respectively. According to Tu et al. (2019), erosion and depo
sition occurred alternately along the coast, whereas the preliminary 
results by Thuy et al. (2019) showed that erosion is more dominant and 
severe in the upper part (upstream of My Thuan) of the Tien River, but is 
relatively low in the estuaries. Jordan et al. (2020) found that hydro
power dams have the strongest impact on riverbed incision, amplified by 
sand mining, whereas relative sea level rise has the lowest effect. 
Recently, Anh et al. (2022) estimated, for the first time, the effect of sand 
mining and dredging on morphological dynamics in the Soai Rap River 
using the Telemac modelling suite of codes. Although the model, which 
was neither calibrated nor validated, encompassed the lower VMD main 
rivers, Anh et al. (2022) focused only on the Sai Gon–Dong Nai River 
system. Overall, the existing studies have focused either on the lower 
part of the VMD and coastal zone (Xing et al., 2017; Tu et al., 2019) or on 
a small region in the upper VMD (Jordan et al., 2020), while the sus
pended sediment transport and morphodynamics in the whole upper 
VMD have been largely ignored. The studies did not provide sufficient 
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Fig. 1. Vietnamese Mekong Delta: (a) major rivers and hydrological stations (red triangle symbols); (b) a typical cross-section where sand mining causes riverbed 
incision; (c) the hourly flow discharge and water level at Chau Doc and Can Tho during the flood season; and (d) longitudinal riverbed profiles along the Tien and 
Hau Rivers. The digital elevation map shown in panel (a) is from the Shuttle Radar Topography Mission (SRTM) with a 30-m spatial resolution downloaded from 
https://dwtkns.com/srtm30m/. Among the eight gauging stations indicated in panel (a), Tan Chau, Chau Doc, Vam Nao, My Thuan, and Can Tho monitor water 
level, discharge, and SSC; Long Xuyen, Cao Lanh, and My Tho monitor water level. 
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understanding of either the inter- or intra-annual variations in the 
morphodynamics in the VMD or the formation of scour holes that cause 
riverbank instability (Hackney et al., 2020). Although authorities and 
researchers know well about the hydrological role of the Vam Nao 
diversion channel, but quantitative estimates of inter-intra-sediment 
diversion remain unknown. 

Using field data and numerical modelling, this study aims therefore 
at addressing quantitatively the formation of scour holes in the VMD, 
and the role of the diversion channel in diverting suspended sediment 
between the river systems is comprehensively evaluated. The present 
work provides a crucial reference for other deltas where the construction 
of artificial diversion structures may be planned or constructed (e.g., in 
Mississippi and Yellow River deltas) (Guan et al., 2019; Pahl et al., 
2020). Moreover, this research is among the pioneering works applying 
the open-source Telemac package (www.opentelemac.org) for modelling 
flow, suspended sediment transport and morphodynamics in the VMD 
rather than using commercial numerical codes. 

The paper is organized as follows: Section 2 describes the study area. 
Section 3 presents the methodology, including the field measurements, 
numerical model set-up and simulated scenarios. Results and discussions 
are given in Section 4, followed by conclusion in Section 5. 

2. Study area 

The VMD is located in the estuary of the Mekong River (Fig. 1a), 
which discharges approximately 300–550 km3/yr of water (Milliman 
and Farnsworth, 2011; Darby et al., 2016) and 40–167 Mt/yr of sus
pended sediment (Kondolf et al., 2014b; Nowacki et al., 2015; Binh 
et al., 2020b) into the East Vietnam Sea via two main distributaries, 
namely, the Tien and Hau Rivers. Upstream of the Vam Nao diversion 
channel (Fig. 1a), the Tien River transports approximately 80 % of the 
flow and suspended sediment from the Mekong River. Due to redistri
bution of the flow and suspended sediment by the Vam Nao diversion 
channel, the Tien and Hau Rivers transport similar amounts of water 
downstream of the diversion channel. 

The flow regime in the VMD is characterized by strong seasonality, 
with two distinct seasons driven by a monsoonal climate: flood season 
(July–December) and dry season (January–June). The SSL of the VMD 

has been reduced by 74 % due to the sixty-four existing dams in the 
Mekong basin (Binh et al., 2020b), and is expected to decrease by 96 % if 
all one hundred thirty-three planned dams are completed (Kondolf et al., 
2014b). Sand mining increased from 7.75 Mm3/yr in 2012 to 29.3 Mm3/ 
yr in 2018 (Bravard et al., 2013; Jordan et al., 2019). Fig. 1b shows a 
typical cross-section where sand mining occurs. 

The VMD is located in the fluvial-to-marine transition zone, which is 
divided into two distinctive zones: the upstream, fluvial-dominated zone 
and the downstream, tide-dominated zone (Gugliotta et al., 2017). The 
boundary between these zones is at the My Thuan and Can Tho gauging 
stations (Fig. 1a). The river areas considered in this study are located in 
the fluvial-dominated, tide-affected zone (Fig. 1a). During the flood 
season, tidal influence is limited to the upper VMD (e.g., at Chau Doc) 
compared to the lower VMD (e.g., at Can Tho) (Fig. 1c) due to high 
riverine fluvial discharges. However, tide-driven water level fluctua
tions are significant during the dry season (e.g., approximately 1 m at 
Tan Chau and Chau Doc and 2 m at My Thuan and Can Tho) (Gugliotta 
et al., 2017). The flow is bidirectional during the dry season because of 
the interaction between the semidiurnal tide from the East Vietnam Sea 
and the riverine discharge from the Mekong River. The rivers are deep 
and narrow, with bed elevations decreasing seaward (Fig. 1d). The SSL is 
dominated by silt and clay, accounting for 95 to 98 % of the total load 
(Koehnken, 2014; Binh et al., 2020b). Bedload, composed of fine sand, 
constitutes only 1 to 3 % of the total annual load (Gugliotta et al., 2017; 
Jordan et al., 2019; Hackney et al., 2020). 

3. Materials and Methods 

3.1. Methodological framework 

Fig. 2 shows a methodological flowchart. We conducted two field 
surveys along VMD main rivers to measure bathymetry, velocity, 
discharge and turbidity. These data were combined with the monitored 
data at gauging stations for analysing flow and suspended sediment 
dynamics and distribution in the river-delta system. The data were also 
used to establish a 2D morphodynamic numerical model. The numerical 
model together with the field data were used to estimate flow and sus
pended sediment diverted through the Vam Nao diversion channel, to 

Fig. 2. Methodological framework adopted in this study. U, V: velocities in the x- and y-direction. τb: critical bed shear stress. Q: discharge.  
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predict (for the past and future) riverbed evolution and scour hole for
mation, and to forecast morphological changes under some likely sce
narios of reduced suspended load at the upstream end. 

3.2. Field measurements 

Two field surveys were conducted from August to September 2017 
(flood season) and from March to April 2018 (dry season) along 570 km 
of the Tien and Hau Rivers and the Vam Nao channel (Fig. 1a). In the 
first survey, we measured the river bathymetry (i.e., eighty-two cross- 
sections), velocity, discharge, and turbidity using an acoustic Doppler 
current profiler (aDcp) and an Infinity-ATU75W2-USB turbidity meter. 
Vertical flow velocities were measured every 0.4–1.5 m depending on 
the water depth. Data processing is given by Binh et al. (2020b). In the 
second survey, infinity velocity and turbidity meters were used to 
measure velocity and turbidity longitudinally and vertically. Three to six 
vertical profiles were recorded at each cross-section depending on the 
river width. Positions of the profiles were recorded by a handheld 
Garmin GPS, and the interval of turbidity measurements was 60 s. 
Turbidity measurements were converted to suspended sediment con
centrations (SSCs) using specific equations (see Supplementary 
Material). 

In the first survey, the measured suspended sediment samples at My 
Thuan and Mang Thit stations in the Tien River (Fig. 1a) yield median 
diameters d50 of 12.6 μm and 6.1 μm, respectively. The associated 
settling velocities are 0.052 and 0.012 mm/s, respectively, estimated by 
Stokes' (1851) law. These values may be underestimated because flocs 
can be formed for cohesive particles. However, this underestimation 
does not affect our numerical results because the settling velocity is one 
of the tuning parameters in the numerical model. Our estimated settling 
velocity combined with the values published in previous papers (see 
Section 3.5) serve as a reference for the initial selection of the settling 
velocity in our model. 

3.3. Numerical modelling framework 

We used the widely known and well-tested Telemac-Mascaret 
modelling system (Hervouet, 2007, www.opentelemac.org) to simulate 
flow, suspended sediment transport, and morphodynamics in the upper 
VMD. Hydrodynamics was modelled using the 2D depth-averaged 

TELEMAC-2D module, and sediment transport and riverbed evolution 
were simulated using the SISYPHE module (Villaret et al., 2013; Lan
gendoen et al., 2016). Both the TELEMAC-2D and SISYPHE modules are 
internally coupled (El Kadi Abderrezzak et al., 2016; Sisyphe, 2018) and 
are solved using the finite element method of an unstructured mesh. 
Telemac-Mascaret can be run in parallel mode, substantially reducing 
the computational time. 

Bedload is negligible in the VMD (Jordan et al., 2019; Hackney et al., 
2020). Suspended sediment consists of both cohesive (d50 < 63 μm) and 
noncohesive (d50 > 63 μm) particles (Wolanski et al., 1996; Xing et al., 
2017). The suspended sediment transport of the sand-mud mixture is 
simulated by solving a 2D advection-diffusion equation for the kth size 
class (k = 1 for cohesive and k = 2 for noncohesive): 

∂(hCk)

∂t
+

∂(huCk)

∂x
+

∂(hvCk)

∂y
=

∂
∂x

�

hεs
∂Ck

∂x

�

+
∂
∂y

�

hεs
∂Ck

∂y

�

+Ek − Dk (1)  

where t is time; h is the flow depth; u and v are depth-averaged flow 
velocities in the x- and y-Cartesian directions, respectively; Ck is the 
depth-averaged concentration of the kth size class (in % volume); εs is 
the sediment turbulent diffusivity, usually related to the eddy viscosity 
by εs = νt / σc with σc as the Schmidt number (set at 1.0 in SISYPHE); and 
Ek and Dk are erosion and deposition rates of the kth size class, respec
tively. SISYPHE computes the bed evolution using the following Exner 
(1925) equation: 

(1 − λ)⋅
∂zb

∂t
+(E − D) = 0 (2)  

in which λ is the bed porosity and zb the bed level (m). In Eq. (2), the 
updated bed elevations are used in TELEMAC-2D to estimate the hy
drodynamic variables, which are sent back into SISYPHE to continue the 
simulation. Governing equations of TELEMAC-2D and erosion and 
deposition estimation in SISYPHE are described in the Supplementary 
material. 

3.4. Model setup and boundary conditions 

We simulated the flow and suspended sediment transport in the 
upper Tien and Hau Rivers (Figs. 1 and 3). The computational domain 
included a 200–300 m wide floodplain extending from both banks of the 

Fig. 3. Geometry and mesh discretization of the computational domain, including locations used for calibrating and validating the model. Representative data of the 
hourly discharge and daily SSC at upstream boundaries and the hourly water level at downstream boundaries are given. 
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rivers and all islands. The unstructured finite element triangle mesh was 
generated with a typical element size equal to 80 m in the main rivers, 
islands and floodplains and 30–40 m in the narrow channels. The 
domain consisted of 106,413 nodes and 206,455 elements. A time step 
of 10 s was selected to keep the Courant number <0.78 for model 
stability. 

There were four boundaries: two upstream boundaries (i.e., Tan 
Chau and Chau Doc) used hourly flow discharges and daily SSCs, and 
two downstream boundaries (i.e., My Thuan and Can Tho) used hourly 
water levels (Fig. 3). The hourly discharge and water level were used 
because of the tidal effect. The initial riverbed material fractions were 
95 % noncohesive sediment (fine sand) and 5 % cohesive sediment 
(Gugliotta et al., 2017). Uniform diameters of d50 = 12.6 μm (from our 
first field survey in 2017) and d50 = 214 μm (Gugliotta et al., 2017) were 
used for the cohesive and noncohesive sediments, respectively. The 
initial geometry was the 2014 river bathymetric data (we also used the 
2010 and 2012 bathymetric data in the Hau River because of data 
availability) collected from the Southern Institute of Water Resources 
Research, Vietnam, and the 2013 SRTM floodplain topography. The 
model performance was evaluated using coefficient of determination 
(R2), Nash-Sutcliffe efficiency (NSE), and root mean square error 
(RMSE) (see Supplementary material). 

3.5. Model calibration and validation 

The VMD model was calibrated and validated using the data from 
2014 to 2015 and 2016–2017, respectively. For each year, the model 
simulated seven months in the flood season from June to December to 
reduce the simulation time because >90 % of the suspended sediment 
was conveyed during the flood season (Binh et al., 2020b). In fact, June 
and December have relatively low discharges that are compatible with 
the dry season discharges, indicating that our model partially covered 
the dry season flow. Manning coefficients ranging from 0.016 to 0.034 
were used initially, as recommended by Manh et al. (2014). Initial se
lections of other parameters were based on various publications, as 
shown in Table 1. We used water levels at Vam Nao, Cao Lanh, and Long 
Xuyen (as the discharges were not available), SSCs at Vam Nao, and 
riverbed elevations at six cross-sections (i.e., CS-1–CS-6) (Fig. 3a) to 
calibrate and validate the model. 

We first calibrated the single hydrodynamic module TELEMAC-2D 
by adjusting the Manning coefficients and velocity diffusivity. We then 
recalibrated the coupled TELEMAC-2D/SISYPHE model by further tun
ing the reference near-bed concentration (zref), the critical bed shear 
stress for erosion (τce), the critical shear velocity for mud deposition 
(u*cr), the settling velocity of the cohesive material (ωs), and the Krone- 
Partheniades erosion constant (M), together with a slight modification 
of the hydrodynamic tuning parameters. Manning coefficients were set 
by zones, namely, 0.15 m1/3/s in the floodplains and islands based on 
the suggestion of Mtamba et al. (2015) and 0.015–0.04 m1/3/s in the 
river channels. In the sediment transport module, τce = 0.15 N/m2, u*cr 
= 0.03 m/s, ωs = 6.6 × 10− 5 m/s, and M = 10− 6 kg/(s⋅m2). The selected 
ωs was slightly larger than the value we measured at My Thuan because 
the sediment grain sizes were coarser in the upstream areas of this site 
(Hung et al., 2014b). The reference elevation zref was 2.5 times the 
median diameter of the noncohesive sediment. Values of RMSE, NSE, 

and R2 (Table 2) indicate that the coupled model was reliably calibrated 
and validated. Moreover, the simulated water levels, SSCs and riverbed 
elevations were in good agreement with the corresponding measured 
data (Fig. 4). 

3.6. Simulated scenarios 

Hydropower dams are the dominant driver of suspended sediment 
reduction and riverbed incision along the Mekong River (e.g., Lu and 
Siew, 2006; Kummu and Varis, 2007; Kummu et al., 2010; Kondolf et al., 
2014b; Manh et al., 2015; Jordan et al., 2020; Binh et al., 2020b, 2021; 
Schmitt et al., 2021), together with sand mining (Brunier et al., 2014; 
Park et al., 2020; Gruel et al., 2022) and shifting in tropical cyclones 
(Darby et al., 2016). In this study, we did not focus on the drivers of 
morphological changes (see the work by Jordan et al. (2020)). Instead, 
we focused more on the morphodynamic processes and the quantifica
tion of the effects of the suspended sediment supply reductions by dams 
under three likely scenarios (Table 3). We simulated morphological 
changes for a ten-year period from 2017 to 2026 by considering the 
tradeoff between the model simulation time and morphological re
sponses after upstream dam construction (15 years after Nuozhadu—the 
last largest mega dam in the Mekong basin). Scenario 1 (S1) used the 
flow and suspended sediment data of 2017, which were assumed to be 
unchanged until 2026. S1 was used as a baseline scenario. Scenarios 2 
(S2) and 3 (S3) used the same flow conditions of 2017 until 2026, while 
the imposed inflow SSCs were reduced. Based on the long-term monthly 
suspended sediment reduction at Tan Chau plus Chau Doc analysed by 
Binh et al. (2020b), daily SSCs from 2017 to 2026 at the upstream 
boundaries at these two stations in S2 were estimated. Kondolf et al. 
(2014b) estimated that the SSL of the Mekong Delta would be only 4 % 
of that in the predam period (pre-1992) if all 133 planned dams in the 
Mekong Basin were built. This means that the post-133-dam SSL will be 
6.7 Mt/yr (Binh et al., 2021). Compared to the 2017 SSL of 43.9 Mt, the 
2026 SSL in S2 and S3 is reduced by 17.5 % and 84.8 %, respectively. 

4. Results and discussions 

4.1. Observed and simulated river flow dynamics 

The flow regimes of the Tien and Hau Rivers show strong seasonality: 
high flows during July–December and low flows during January–June 

Table 1 
Physical parameters of cohesive suspended sediment in previous publications that were used to tune our coupled model.  

Parameters References 

ωs 

(m/s) 
u*cr 

(m/s) 
M 
kg/(s⋅m2) 

τce 

(N/m2) 

10− 4–3 × 10− 4 8.9 × 10− 3–1.1 × 10− 2 5 × 10− 6–1 × 10− 4 0.15–1.5 Letrung et al., 2013 
2.16 × 10− 4–1.85 × 10− 3 4.5 × 10− 3–5.3 × 10− 3 5.13 × 10− 6–8 × 10− 6 0.028–0.044 Hung et al., 2014b 
10− 4–1.3 × 10− 3 4.4 × 10− 3–5 × 10− 3   Manh et al., 2014 
5 × 10− 5–3.3 × 10− 4 1.0 2 × 10− 5 0.2 Thanh et al., 2017  

Table 2 
Evaluation of the model performance.  

Stations Water levels SSCs 

RMSE (m) NSE R2 RMSE (g/L) NSE R2 

Model calibration 
Vam Nao  0.10  0.83  0.90  0.02  0.72  0.87 
Cao Lanh  0.09  0.94  0.94    
Long Xuyen  0.07  0.95  0.97     

Model validation 
Vam Nao  0.12  0.80  0.88  0.05  0.68  0.78 
Cao Lanh  0.08  0.93  0.93    
Long Xuyen  0.06  0.97  0.98     
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(Figs. 5a–b and 6). The observed daily flood peaks at Tan Chau and Chau 
Doc were large in 2014, corresponding to maximum daily discharges of 
24,350 and 6620 m3/s (water levels of 3.71 m and 2.95 m), respectively. 
However, due to (mainly) the redistribution of flow by the Vam Nao 
diversion channel, the simulated daily flood peaks at Long Xuyen and 
Cao Lanh in 2014 were 18,930 and 16,230 m3/s, respectively. During 
the period from 2014 to 2017, the observed data show that the mean 
annual flow ratio between the Tien and Hau Rivers upstream of the Vam 
Nao channel (i.e., at Tan Chau and Chau Doc) was 83:17, while that 
downstream of the Vam Nao channel (from simulated results at Cao 
Lanh and Long Xuyen) was 52:48. This analysis indicates that the Vam 
Nao diversion channel may have a significant impact on the flow dy
namics of the Tien and Hau Rivers. 

The observed and simulated discharges from 2014 to 2017 during 
the dry season (March–April) show that the flow direction was reversed 
(Figs. 5a and 7), with maximum hourly rates of − 4780 m3/s and − 1850 
m3/s (in 2016) at Tan Chau and Chau Doc, respectively (Fig. 5a). This is 
because of the tidal effect, which causes the tidal discharge to exceed the 

low riverine flow. In the dry year (i.e., 2016), the observed mean annual 
discharge at My Thuan was lower than that at Can Tho, with a ratio of 
48:52. This indicates that the tidal effect may be stronger in the Hau 
River than in the Tien River (Fig. 5b). Both observed and simulated data 
show that the tidal regime may have had a clear effect on the water 
levels of the two rivers (Figs. 4a–c and 5b). This is illustrated by a si
nusoidal oscillation of the water levels in these rivers, which mimics 
changes in the tidal regime. 

The observed data show that the vertical distribution of the flow 
velocity largely depended on the shape of the cross-section (Fig. 5c–d). 
In asymmetric cross-sections (Fig. 5c), the flow was faster on the steeper 
bank, whereas in symmetric cross-sections (Fig. 5d), the velocity was 
symmetric. The velocity was generally larger in the upper zone than in 
the lower zone in a cross-section. During the flood peak, the simulated 
maximum flow velocity exceeded 2 m/s in some areas, especially in 
narrow and meandering sections (Fig. 6c), resulting from high unit 
discharges (Fig. 6a). On the other hand, the simulated dry season flow 
velocities were mostly smaller than 1.5 m/s (Fig. 6f). However, the 

Fig. 4. Measured versus simulated water levels, SSCs, and riverbed elevations at various locations for (a–d) model calibration and (e–f) model validation. The 
locations indicated in the figure are shown in Fig. 3. 

Table 3 
Simulated scenarios in the coupled model to forecast morphological changes from 2017 to 2026 caused by suspended sediment reductions due to river damming.  

Scenario Discharge 
(m3/s) 

Water level 
(m) 

SSC 
(g/L) 

SSL change (%) 
(2026 vs. 2017) 

S1 Same as 2017 Same as 2017 Same as 2017 – 
S2 Same as 2017 Same as 2017 Based on long-term monthly suspended sediment reduction in Binh et al. (2020b) 

2017
↘

2026 

− 17.5 % 

S3 Same as 2017 Same as 2017 Based on Kondolf et al. (2014b) 
2017 → 2019

↓
2020 → 2026 

− 84.8 %  
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pattern of the simulated water depth in the dry season was similar to that 
in the flood season (Fig. 6b, e). 

4.2. Suspended sediment dynamics and distribution 

Suspended sediment in the VMD varies inter- and intra-annually 
(Figs. 8–9). The observed and simulated maximum daily SSC (from the 
gauging stations at Tan Chau to Vam Nao) during the flood season (i.e., 
August–September) reached 0.47 g/L (equivalent to almost 1 Mt), while 
the minimum value during the dry season (i.e., March–April) was 
negligible. Most of the suspended sediment was transported during the 
flood season: 90–98 % at Tan Chau, 91–96 % at Chau Doc, 89–93 % at 
My Thuan, and 86–94 % at Can Tho during 2014–2017 (Fig. 8b-e). 
Although the maximum SSL of the VMD during 2014–2017 was 66 Mt/ 
yr (in 2014), this value was lower than the predam SSL (pre-1992) of 
166.7 Mt/yr (Binh et al., 2020b). On average, the mean annual SSL of 
the VMD in 2014–2017 (42 Mt/yr) decreased by approximately 75 % 
compared to the predam amount. Because hydropower dams are likely 
to contribute to a significant reduction in the SSL in the VMD (Binh et al., 
2020b), a sustainable reservoir sediment management plan should be 
implemented for current and planned dams in the Mekong basin. For 
existing dams, prompt measures (i.e., excavation) can be considered to 
urgently dredge the accumulated sediment in reservoirs for delivery 
downstream. For planned dams, alternative locations and designed 
configurations of dams should be revised to minimize reservoir sedi
mentation. Then, conventional sediment management measures (e.g., 
drawdown flushing, bypassing, and sluicing) to route sediment through 
or bypass reservoirs should be considered at the design stage. Further
more, advanced sediment management techniques, such as hydro
suction, dam asset management, and dam rehabilitation and retrofitting, 
can be employed. Schmitt et al. (2021) found that it is very important to 
consider strategic placement of hydropower dams to maintain sediment 
supply from the Mekong basin rather than trying to increase sediment 
yields or improve sediment management for individual dams. 

There are substantial differences in the spatial variations in the 
suspended sediment between the flood and dry seasons (Figs. 8–9). In 
dry seasons, the simulated SSLs along the rivers were relatively similar 
because of the low supply of suspended sediment from the Mekong River 
(Fig. 9a) and the high SSC induced by tides and wind (Thanh et al., 2017; 
Xing et al., 2017; Eslami et al., 2019). However, during flood seasons, 
the simulated results show that the SSC decreased in the downstream 
direction because of the high suspended sediment supplied from the 
Mekong River (Fig. 9b). In the Hau River, the observed mean suspended 
sediment ratios between Can Tho and Chau Doc from 2014 to 2017 were 
3.2–5.6 and 1.6–3.1 during the dry and flood seasons, respectively. The 
mean ratio in 2009 estimated by Manh et al. (2014) was 2.8. These re
sults imply that the sediment flux of the Mekong River in the flood 
season may play a key role in stabilizing landforms in the VMD estuaries, 
especially in compacting with the shrinkage of the delta due to rapid 
coastal and riverbank erosion (Li et al., 2017; Khoi et al., 2020). The 
newly deposited suspended sediment in the floodplains carried by the 
Mekong's flood flows may also help counteract the delta's sinking 
resulting from relative land subsidence (i.e., absolute land subsidence 
plus rising sea level) due to groundwater overexploitation (Minderhoud 
et al., 2020; Tran et al., 2021). However, the sediment load of the 
Mekong River has been reducing due to human activities (Kondolf et al., 
2014b) and tropical cyclone shifts (Darby et al., 2016). To address this 
issue, Schmitt et al. (2021) suggested maintaining the sediment supply 
from the Mekong basin in enhancing climate resilience and maintaining 
lands in the delta. 

Both the observed and simulated SSC and SSL in the Tien River were 
significantly greater than those in the Hau River (Figs. 8–9). The 
observed mean annual suspended sediment ratios between the Tien and 
Hau Rivers during 2014–2017 were 84:16 and 61:39 upstream (i.e., Tan 
Chau and Chau Doc) and downstream (i.e., My Thuan and Can Tho) of 
the Vam Nao diversion channel, respectively. This difference between 
the upstream and the downstream is likely because of the Vam Nao 
channel, which diverts large amounts of water and suspended sediment 
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Fig. 6. Simulated unit discharge, water depth, and velocity magnitude (a–c) during the annual flood peak on 8/11/2014 and (d–f) during the nonflood period on 6/ 
9/2016. For clarity, we applied cut-offs of 0.2 m2/s, 1 m, and 0.02 m/s to the maps showing the unit discharge, water depth, and flow velocity, respectively. 

Fig. 7. Simulated magnitude and direction of flow velocity, showing reversed flow caused by tidal effects under low riverine fluvial discharge. The sketch on the top 
indicates the study area. 
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from the Tien River to the Hau River. Suspended sediment diverted from 
the Tien River to the Hau River via the Vam Nao channel (mainly in the 
flood season) can be attributed to a significant discharge difference 
between the two rivers upstream of this diversion channel (i.e., 83 % in 
the Tien River and 17 % in the Hau River, see Section 4.1). Such a large 

discharge difference may create a hydraulic gradient from the Tien River 
towards the Hau River, leading to a sharing of suspended sediment from 
the former to the latter that balances the suspended sediment budget and 
geomorphological conditions in the VMD's river network. Fig. 9 clearly 
shows that the simulated SSC in the Hau River above Point B was very 

Fig. 8. Observed (a) daily SSC in the VMD and monthly SSL at (b) Tan Chau, (c) Chau Doc, (d) My Thuan, and (e) Can Tho.  

Fig. 9. Spatial and longitudinal distribution of the simulated SSC in (a) nonflood conditions on 11/5/2014 and (b) flood conditions on 8/11/2014. Longitudinal SSCs 
are extracted along the main branches of the Tien and Hau Rivers. 
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low and suddenly increased from Point B to Point C. In particular, 
approximately 61–81 % of the monthly SSL during flood seasons from 
2014 to 2017 at Point C was from the Vam Nao channel. These per
centages are in line with the estimate of 76 % in 2009 by Manh et al. 
(2014). This indicates that the Vam Nao channel is very important in 
balancing water and suspended sediment in the VMD river system. Any 
changes in the morphology of the Vam Nao channel (discussed in Sec
tion 4.3) may cause changes in the total water and suspended sediment 
budgets in the delta. Therefore, maintaining the geomorphological sta
bility of the Vam Nao channel may favour the sustainable development 
of the VMD. 

Fig. 10 shows the vertical distribution of the observed SSC, which 
depended on the shape of the cross-section and flow pattern. The SSC 
was always higher in the lower layer than in the upper layer, on the 
order of 2 or 3 times. The sediment tends to be trapped in the scour 
holes, resulting in higher SSCs in cross-sections at such locations 
(Fig. 10a). The SSC in the scour hole was approximately 8 times greater 

than that at the surface. In an asymmetric cross-section, the SSC was 
higher on the steeper-slope bank than on the opposite bank. For 
instance, the SSC on the right bank in Fig. 10b was more than double 
that on the left bank. This is likely because of the higher flow velocity, 
which has a larger capacity to transport and erode sediment from the 
bank. 

4.3. Riverbed evolution and scour hole formation 

Fig. 11 shows the simulated riverbed changes from 2014 to 2017. 
Generally, the riverbed of the Vam Nao channel was highly incised 
compared to those of the Tien and Hau Rivers. Riverbed incision mainly 
occurred on the outer banks of meanders, at confluences, and in the 
middle of the narrowing (contracted) channels (Figs. 11a and 12a–b), 
where the flow velocity was high (Fig. 11b). On the other hand, depo
sition mostly appeared on the inner banks of meanders, on the tail of 
islands, and in secondary channels (Figs. 11a and 12c), where the 
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cross-section at Point C (located at the Vam Nao channel-Hau River confluence, 1 km downstream from Point B) in April 2018 (dry season) during our field survey. 
The locations of Points A and C are shown in Fig. 9. 

Fig. 11. Simulated riverbed evolution in 2017 
compared to the 2014 riverbed level: (a) spatial 
evolution depth and (b) velocity magnitude. The 
modelled scour holes are typically compared with the 
scour holes in cross-sections measured in September 
2017 during the first field survey (Fig. a) to illustrate 
the prediction reliability. Some typical locations of 
riverbank erosion and deposition are shown by 
photos taken during the second field trip in April 
2018. Details of Zones A–C are shown in Fig. 12.   
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velocity was low. In the Tien River, most of the riverbed incision sections 
were from Tan Chau to Vam Nao and from Cao Lanh to My Thuan. These 
most significant incision sections were also reported by Binh et al. 
(2020b) and Jordan et al. (2019) based on measured bathymetric data. 
In the Hau River, the riverbed was more incised from Chau Doc to Long 
Xuyen. 

The simulated mean net riverbed incision depths of the Vam Nao, 
Tien, and Hau Rivers were − 2.38, − 1.12, and − 0.68 m, respectively, 
from 2014 to 2017. These values corresponded to incision rates of 0.79, 

0.37, and 0.23 m/yr, respectively. The simulated results show that the 
mean cumulative incision volume of the entire study area from 2014 to 
2017 was − 65.3 Mm3/yr (Fig. 13), which was underestimated by 22.4 % 
compared to the measured volume of − 84.1 Mm3/yr in the same period. 
The model underestimates the incision volume and depth because the 
sand mining effect was not accounted for in our model. Sand mining 
accounted for 25.6 % of the total incision volume (Binh et al., 2021). 
Moreover, model uncertainty may partially contribute to such an un
derestimation. Conversely, riverbed incision in 2017 was the most sig
nificant (85.2 Mm3 incision compared to only 5.1 Mm3 deposition) 
(Fig. 13) because of its high flood flow (Fig. 5a) and relatively low SSC 
(Fig. 8a). Additionally, the total net simulated incision volume of the 
entire study area was − 196 Mm3 from 2014 to 2017, which was on the 
same order as − 200 Mm3 over the ten-year period of 1998–2008 in the 
entire VMD estimated by Brunier et al. (2014). 

According to Fig. 14a–b, the model predicted the formation of nine 
scour holes in the Tien River and seven scour holes in the Hau River. The 
riverbed will be identified as a scour hole if the slope of the riverbed at 
the scour zone is suddenly steeper than the slope of the surrounding 
areas; the mean ratio of the slopes between the scour holes and the 
surrounding areas was, on average, approximately 15 times. The 
modelled scour hole locations were verified by comparing them with 
those measured during the first field survey in September 2017 
(Fig. 11a). We classified scour holes into three categories according to 
the scour depths (i.e., at the deepest point), namely, shallow (scour 
depths <5 m), medium (scour depths from 5 m to 10 m), and deep (scour 
depths >10 m), based on percentiles of approximately 33 %. Under this 
consideration, two scour holes in the Tien River and one scour hole in 
the Hau River were classified as medium, whereas the remaining scours 

Fig. 12. Typical locations of riverbed evolution (e.g., at scour holes) during the simulated 2014–2017 period and associated bed shear stress (average over 
2014–2017 period) and flow velocity distributions. The locations of Zones A–D are shown in Fig. 11. 

Fig. 13. Simulated cumulative riverbed erosion and deposition volume of the 
entire study area. The riverbed experiences annual net erosion. 
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were shallow. 
We found that most of the scour holes were formed at river conflu

ences and meandering segments. Although the processes of scour hole 
formation were different in these geomorphological settings (Rice et al., 
2008; Ferrarin et al., 2018), the common mechanism was that the 
erosive capacity of the flow was very high in the scour holes because of 
the high flow velocity, which induced high bed shear stresses. In this 
study, we neglected the small-scale processes in scour holes. Represen
tative simulated scour holes at Zones A and B are illustrated in 
Fig. 12a–b. In these scour holes, the incision rate was largest in 2017 
when high flood flow was combined with low SSC (Figs. 5a and 8a). 
Notably, the scour hole at Zone B was at the location of a severe river
bank collapse that occurred on 22 April 2017 (Binh et al., 2020b). 
Therefore, we speculate that scour holes are likely one of the main 
causes of riverbank erosion in the VMD that local authorities should 
consider in their protective actions against riverbank collapse. 

4.4. Forecasted morphological changes between 2017 and 2026 due to 
sediment reductions 

Riverbeds in the VMD were forecasted to be significantly incised by 
2026 (Fig. 15). The mean net riverbed incision depths of the Tien, Hau, 
and Vam Nao Rivers in S1 were − 1.32, − 1.18, and − 2.21 m, 

respectively. The respective values were − 1.56, − 1.36, and − 2.49 m in 
S2 and − 2.31, − 1.66, and − 3.2 m in S3. We found that the forecasted 
riverbed incision in the Vam Nao channel was higher than that in the 
Tien and Hau Rivers (Fig. 15a). Upstream of the Vam Nao channel, the 
riverbed of the Tien River was more incised than that of the Hau River, 
but the opposite was true downstream of the Vam Nao channel. The 
forecasted riverbed incision of both the Tien and Hau Rivers was more 
severe upstream than downstream of the Vam Nao channel. We esti
mated that the total net bed sediment losses from 2017 to 2026 in the 
entire study area were − 2472 and − 3316 Mm3 in scenarios S2 and S3, 
respectively, which were increased by 23 % and 65 % compared to S1 
(− 2011 Mm3) (Fig. 15b). On average, the forecasted mean net riverbed 
incision by 2026 of the entire study area was increased by 17 % and 61 
% in S2 (− 1.48 m) and S3 (− 2.04 m), respectively, compared to S1 
(− 1.27 m) (Fig. 15a). The projected increasing riverbed incision may in 
turn cause some resulting environmental changes in the VMD. First, it 
may intensify salinity intrusion, causing difficulties in people's liveli
hoods (Loc et al., 2021). This may require a large-scale economic 
transformation (i.e., plants and animals that can survive under high 
salinity concentrations) for the system to adapt to changing conditions. 
Second, the incised riverbed may also reduce water levels during dry 
seasons, causing difficulty for irrigation because of river–floodplain 
disconnection (Park et al., 2020; Binh et al., 2021). 

Fig. 14. Classifications of scour holes based on the scour depth (the bar charts) and geomorphological settings (pie charts) during 2014–2017 (a–b) and in scenario 3 
during 2017–2026 (c–d). 

Fig. 15. Predicted morphological changes in the three scenarios: (a) mean net riverbed incision depth and (b) annual total volume changes in the entire study area.  
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During 2017–2026, twenty-two large-scale scour holes were fore
casted to form in the Tien and Hau Rivers in S3, 11 in each (Fig. 16). The 
scour depths in S3 became deeper than those in 2014–2017. In the Tien 
River, four scour holes were classified as deep and five as medium 
(Fig. 14c). In the Hau River, four scour holes were classified as deep and 
seven as medium (Fig. 14d). The most severe scour hole was likely at the 
Hau River-Vam Nao channel confluence (Figs. 14d and 16). The 
maximum scour depth at this location in S3 was forecasted to be up to 
− 16 m by 2026. In the Tien River, the most severe scour hole was likely 
at a location 11 km downstream from Tan Chau, at which the riverbank 
was eroded (Figs. 14c and 16). Notably, our forecasted riverbed incision 
at this location was likely underestimated because we did not account 
for the sand mining effect in our model, while sand mining was very 
active there (Fig. 1b). Generally, the forecasted severe scour holes were 
around the locations of severe riverbank erosion observed during our 
field surveys in 2018 (Fig. 16). Therefore, it is likely that scour holes will 
continue to cause the increasing collapse of the riverbank in the near 
future. 

Although not included in the model, sand mining remains one of the 
key causes of riverbed incision in the VMD (Brunier et al., 2014; Gruel 
et al., 2022). Scour holes formed by sand mining are likely to trap the 
bedload, which may result in a deficit in the bedload supply to the 
downstream reaches, likely causing migration/expansion of riverbed 
incision in both upstream and downstream directions (Anh et al., 2022). 
Moreover, scour holes created by sand mining can be a root cause of 
riverbank instability (Hackney et al., 2020). This can explain why the 
scour holes predicted by our model were near the locations of severe 
riverbank erosion (Figs. 11 and 16). To alleviate/decelerate the likely 
consequences of riverbed incision and scour holes on river system sta
bility, in addition to considering integrated sediment management at the 
basin scale, including sustainable reservoir sedimentation management, 
sand mining should be strictly prohibited in the VMD with stronger 
regulations to prevent illegal mining activities, both from licensed 

operators and from local citizens. Decision makers are recommended to 
take actions to limit sand mining activities (i.e., considering not reli
censing the expired mining sites while not approving new licenses) to 
save our delta in the long run. 

4.5. Model uncertainties and outlook 

The developed model may encounter some uncertainties. First, the 
2014 bathymetric data are not fully available for the entire Hau River. 
Therefore, the bathymetric data measured in 2010 and 2012 were also 
used to create the input geometry. However, these data are up-to-date. 
Second, the model did not include sand mining effects on morpholog
ical changes. Thus, the simulated mean net riverbed incision volume in 
the entire study area from 2014 to 2017 (− 65.3 Mm3/yr) was under
estimated by 22.4 % compared to the measured data (− 84.1 Mm3/yr). 
This value is within the range of 14.8–25.6 % under sand mining effects 
on riverbed incision (Binh et al., 2020b, 2021). The underestimation can 
be attributed partially to sand mining (i.e., it is present in reality but was 
not considered by the model) and partially to model uncertainty. Third, 
bedload transport was not considered, which may lead to unavoidable 
uncertainty in bed evolution. However, this is acceptable because the 
bedload contributes a negligible amount (1–3 %) to the total load 
(Jordan et al., 2019; Hackney et al., 2020). Fourth, to reduce the 
simulation time, we simulated only seven months during the flood 
season in each simulated year. This may have uncertainties in the 
erosion and deposition processes. However, this consideration is 
appropriate because up to 98 % of the suspended sediment in the VMD is 
transported within the flood season (Fig. 8b–e). Fifth, the model used a 
sediment mixture of only two sediment classes (cohesive and non
cohesive), while the natural sediment is usually composed of different 
grain sizes (Lepesqueur et al., 2019). This simplification may result in 
under- or overestimation of bed evolution because the model neglects 
the effects of sediment densities and grain size distributions, which have 

Fig. 16. Forecasted riverbed evolution in 2026 relative to 2017 in S3 under an 84.8 % suspended sediment reduction. Twenty-two scour holes (indicated by black 
circles) are formed. Some of the scour holes are at the locations of riverbank erosion observed during the 2018 field survey. A drone photo of a severe bank collapse at 
the Hau River-Vam Nao channel confluence was retrieved from Vnexpress.net accessed on 1/18/2021. 
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been proven to substantially enhance the performance of the model 
(Lepesqueur et al., 2019). Sixth, longer projected time scales (e.g., 
spanning several decades) should be forecasted to provide better infor
mation for holistic river management. Finally, drivers of riverbed inci
sion are not only dams but also sand mining/dredging (Anh et al., 2022; 
Gruel et al., 2022) and climate variability/change (Darby et al., 2016). 
Therefore, future studies are expected to quantify the role of each driver 
on riverbed incision in the large-scale VMD, which can provide impor
tant indications for the government to sustainably develop the delta 
while effectively minimizing the negative impacts. 

5. Conclusions 

Hydrodynamics, suspended sediment transport, and morphody
namics in fluvial-dominated, tide-affected rivers in the VMD from 2014 
to 2017 were investigated using field survey data and a coupled hy
drodynamic and sediment transport model. The morphological evolu
tion under three scenarios of suspended sediment supply reductions was 
forecasted for the decade ending in 2026. The main findings of this study 
are as follows: 

– The Vam Nao channel has a significant impact on the flow and sus
pended sediment dynamics of the Tien and Hau Rivers. We estimated 
that approximately 61–81 % of the mean SSL of the Hau River was 
diverted from the Tien River via the Vam Nao channel in the flood 
season from 2014 to 2017.  

– We found that the tidal effect was stronger in the Hau River than in 
the Tien River. Both observed and simulated data from 2014 to 2017 
show that the tidal regime has a clear effect on the water level.  

– In the Tien River during the dry season from 2014 to 2017, the SSL 
was longitudinally higher upstream than downstream of the Vam 
Nao channel due to tidal effects. However, the opposite relationship 
was observed during the flood season because of the dominance of 
the riverine fluvial flow from the Mekong River. In the Hau River, the 
SSL was always higher downstream than upstream of the Vam Nao 
channel because of suspended sediment diverted from the Tien 
River.  

– The simulated results from 2014 to 2026 show that riverbed incision 
is higher in the Vam Nao channel than in the Tien and Hau Rivers. In 
the Tien River, the sections with the most riverbed incision are from 
Tan Chau to Vam Nao and from Cao Lanh to My Thuan. In the Hau 
River, the riverbed is more incised from Chau Doc to Long Xuyen.  

– Simulated results show that 16 scour holes were formed in the Tien 
and Hau Rivers during 2014–2017. We forecasted that 22 scour holes 
are likely to appear in these rivers by 2026 if the suspended sediment 
supply from the Mekong River is reduced by 84.8 % due to river 
damming. Scour holes are predicted to be formed at locations of 
severe riverbank erosion observed during our field surveys in 2018. 
We anticipate that scour holes are likely to continue to cause 
increasing collapse of the riverbank in the near future. Therefore, the 
predicted results can provide useful information for local authorities 
to actively propose appropriate countermeasures against riverbank 
erosion. 
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Abstract
Because recurring floods in the Philippines have become more damaging throughout time, risk assessments, quantifying, and 
visualizing flood damages as accurately as possible become imperative. To deal with an up-todate database and a practical 
assessment tool, a satellite imagery-based method was used which aimed to map flood inundation and estimate damages brought 
by the flood during Typhoon Ulysses. This paper presents a framework for an integrated flood risk management in a river basin 
context with the following components as follows: 1) collection of the comprehensive database containing information relevant 
for flood analysis; 2) use of a satellite-imagery based method for flood inundation map using Google Earth engine; 3) validation 
of map accuracy through quick post-flood participatory approach. Analysis of the recent flood inundation event in November 
2020 in Cagayan Valley, Philippines showed the inundation of an extensive area of 620.88 km2 affecting the Cagayan province 
at 55.91% and Isabela province at 44% share of inundation. The flood severely affected approximately 614.05 km2 of the total 
croplands. Using a participatory validation approach, the overall accuracy of datasets used is 97.78% while flood extent is 95%. 
Through this study, the framework, approach, and methodology can be replicated in other locations in the Philippines and in 
other countries which recurrently experience flooding. 
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Introduction 
Floods are one of the most destructive natural disasters in terms of 
socio-economic damages, both globally and in the Philippines. Due 
to geographic location and diverse topography, many countries es-
pecially in Asia including China, Bangladesh, Japan, India, and 
Philippines have been severely affected and suffered from floods. 
Over the last half-century, more than 80% of natural catastrophes 
in the Philippines are accounted for typhoons and floods. 

The recent flooding in the Philippines 2020 was brought about 
by the succeeding occurrences of six (6) tropical cyclones in the 
country, the last of which is Typhoon Ulysses, bringing unprece-
dented rains to the Cagayan Valley region resulting in unexpected 
floods heights and extensive inundation to the provinces of Isa-
bela and Cagayan. Flood risk assessment and decision-making 
necessitate the most precise quantification of flood risk damages 
feasible [2-4]. The availability of a detailed spatial database for 
damage assessment can potentially improve the ability to generate 
high-resolution flood damage maps. However, just extracting and 
mapping these resources alone is laborious while the adoption of 
the traditional approach is time-consuming and expensive. Flood 

damage estimate using GIS and RS has become a useful instru-
ment for developing a near real-time flood mapping and effective 
flood risk mitigation policy [5-6].

Many attempts have been made in the past to map flood vulnera-
bility in the Philippines using LiDAR but unfortunately, the cover-
age for a sufficiently high accurate Digital Terrain Model (DTM) 
is not complete, especially in the river basin context [7-8]. Flood 
management based on water level forecasting is ineffective in pro-
viding a spatial flood region for mapping flood events [9-10]. The 
limitations of the hydrological model-based method are addressed 
by satellite-based flood extent monitoring [11]. In the Philippines, 
suggest the use of Google Earth Engine (GEE) in post-disaster re-
covery monitoring in Leyte brought by Typhoon Haiyan in 2013 
[12]. GEE also offers a rapid and direct flood damage estimation 
with the default embedded data and script in GEE [3,13,14]. 

One of the satellite data in GEE is the Sentinel-1. Apart from mul-
tiple applications of Sentinel-1, it uses a wide area coverage with 
near real-time data acquisition making it a more feasible tool al-
lowing for more efficient and cost-effective use. Over the last few 
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decades, a considerable number of studies have been through on 
the SAR flood mapping method in combination with other Remote 
Sensing (RS) imageries whereas other researchers suggest the use 
of Sentinel-1 radar image to calibrate or validate the extent derived 
using other models [1, 15,16]. 

All flood mapping-related research in the Philippines is useful in 
giving a geographic representation of the distribution of flooded 
regions however, no studies have yet been conducted to evaluate 
and map the actual flooding of the entire Cagayan River Basin 
using different datasets. GEE can offer an estimation of flood 
damages but in very low-resolution datasets (MODIS land cover 
500m, JRC Population 250m) thereby affecting the accuracy of 
reports. With the readily available, free, up-to-date, and high-res-
olution data accessible in OpenStreetMap (OSM) and obtainable 
from National Mapping and Resource Information (NAMRIA), a 
comprehensive database containing information relevant for flood 
analysis was collected and analyzed in this study. Since GIS and 
RS have proven their capability in flood mapping, the study is very 
timely and significant, especially in the case of the Philippines.  

Hence, this paper aimed to 1) collect the comprehensive database 
containing information relevant for flood analysis; 2) use a satel-
lite-imagery-based method for flood inundation map using GEE; 
3) validate map accuracy through a quick post-flood participatory 
approach. This resolution will exhort the Disaster Risk Manage-
ment Council and the Cagayan Valley Regional Disaster Man-
agement Council in the Philippines to expedite the restoration of 
typhoon-damaged regions and provide basic needs to significantly 
affected people. The study's findings will be beneficial in devel-
oping flood risk reduction policies and preventive measures for 
future flood events.  

Materials and Methods 
Figure 1 depicts the overall methodological framework used in the 
study. Two validations were performed: for datasets and flood ex-
tent. A post-flood survey was conducted to determine the threshold 
for estimating flood extent in GEE. Flood maps and flood-risked 
resources were quantified and tabulated. Validation of map accu-
racy through a quick post-flood participatory approach was done. 
A step-by-step procedure was presented for future replication of 
the study. 
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Figure 1: A summary of the overall methodological framework used in the study

Data Collection, validation, and accuracy 
A comprehensive and up-to-date database containing information 
relevant to flood analysis was collected. Data is characterized by 

different sources and dates depending on the latest and finest data 
there is. Flood damages were evaluated in the following features 
(Table 1).
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Table 1: Definition of features and sources of data where damages were evaluated
Class Feature Definition Data Reference
Population The number of people living in a place Philippine Statistics Authority (PSA). 

2020.
Annual Crop Cultivated with crops with a growing cycle under one year, which 

must be newly sown or planted for further production after harvest-
ing.

National Mapping and Resource Informa-
tion Technology (NAMRIA). 2015.

Built-up Composed of areas of intensive use with much of the land covered 
with structures. Individual buildings or groups of connected build-
ings 

NAMRIA 2015
OpenStreetMap (OSM). 2020.

Inland Wetland Aquatic influence environments are sometimes referred to as fresh-
water and inland water/water bodies but also include brackish water 
located within land boundaries

NAMRIA. 2015.

 

matrix which is commonly used to calculate thematic accuracy based on the results of 

validation (validation through ancillary maps and field). It provides three measures of 

accuracy – user accuracy, producer accuracy, and overall accuracy. During the post-flood 

survey, on the other hand, data thru questionnaire surveys were conducted at the selected 

barangays in Cagayan River Basin. Eighty-four (84) locations (Figure 2) and households 

(Figure 3) were surveyed for the highest actual flood depth and flood duration. The data was 

used to determine the threshold value of flood extent using GEE. Figure 4 shows some 

pictures taken during the post-flood field survey.  

 
  

Figure 2: Locations of households (green dots) interviewed during the post-flood survey of typhoon 

Ulysses showing the flood depths. Those with a zero value indicate that no flooding happened in 

that specific location.   

   

Figure 2: Locations of households (green dots) interviewed during the post-flood survey of typhoon Ulysses showing the flood depths. 
Those with a zero value indicate that no flooding happened in that specific location.
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Figure 3: Ground photographs of sites where households were asked information such as flood duration and flood height to indicate 
water levels during flooding.

Flood inundation using GEE and damage assessment 
Detailed workflow of flood extent derivation using GEE is shown 
in Figure 4. The workflow was based on the recommended practice 
developed by [13]. Flood inundation was derived using a change 
detection approach on Sentinal-1 (SAR) data. The Sentinel 1AVH 
polarization images were retrieved during the pre-flood period 
(October 20, 2021) and during the flood period (November 13-

16, 2020). The various pre-processing techniques including radio-
metric calibration, removal of noise, and orthorectification were 
performed. The threshold of 1.10 was applied to deduce the flood 
hazard in the lower basin. The Global Surface Water dataset (2018, 
30m resolution) was used to mask areas covered by water for more 
than 10 months. 

 

 
  

Figure 4: Workflow of flood inundation using GEE and damage assessment in ArcGIS. The 

high-resolution datasets like DTM for slope and land cover maps were the two main inputs 

altered from the default dataset used by GEE.  

 

In this study, IFSAR DTM of 5-m resolution was used to derive slope instead of World 

Wildlife Fund WWF HydroSHEDS hydrologically conditioned DTM which is based on 

Shuttle Radar Topography Mission (SRTM) and has a spatial resolution of 3 arc-seconds. To 

estimate the damage that occurred due to flood, elements discussed earlier like population, 

built-up, croplands, and inland wetland were intersected. The area and/or count of each 

Figure 4: Workflow of flood inundation using GEE and damage assessment in ArcGIS. The high-resolution datasets like DTM for 
slope and land cover maps were the two main inputs altered from the default dataset used by GEE.
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In this study, IFSAR DTM of 5-m resolution was used to derive 
slope instead of World Wildlife Fund WWF HydroSHEDS hy-
drologically conditioned DTM which is based on Shuttle Radar 
Topography Mission (SRTM) and has a spatial resolution of 3 
arc-seconds. To estimate the damage that occurred due to flood, 
elements discussed earlier like population, built-up, croplands, and 
inland wetland were intersected. The area and/or count of each 
inundated land cover was calculated and tabulated. This was done 
for all barangays affected. It should be noted that the damages 
were evaluated in a river basin context. 

Quick post-flood participatory approach 
Department of Public Works and Highways Region 2 in collab-

oration with Hdronet Consultancy, Inc. and barangay officials, 
mapped flood extents where they were instructed to assign appro-
priate colors to each region of their barangay-based on Typhoon 
Ulysses' results. Important areas wherein floodwater originates 
(Cagayan River, Pinacanuan River, and open drainage system) 
were explained to the participants for easier mapping. When they 
finished assigning colors and identifying important facilities and 
routes in their respective barangays, they were then tasked to list 
the priority areas which are usually flooded. Figure 5 shows the 
barangay personnel identifying the extent and time concentration 
of flood during typhoon Ulysses. 

 

inundated land cover was calculated and tabulated. This was done for all barangays affected. 

It should be noted that the damages were evaluated in a river basin context.  
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Figure 5: Representatives from barangays (a), (b), (c) identify the subsidence and duration 

time in their area, and a sample color-coded flood depth map (d)  

  

  

Figure 5: Representatives from barangays (a), (b), (c) identify the subsidence and duration time in their area, and a sample color-coded 
flood depth map (d)

Source: Department of Public Works and Highways (2021) Consulting Services for the Drainage Master Plan of Tuguegarao City

The consulting agency carefully digitized the output maps in Goo-
gle Earth producing laid-out maps in JPEG format, which were 
then georeferenced by our group for flood extent validation us-

ing GEE. Figure 6 shows the georeferenced photos and sampling 
points for validation of flood extent using GEE. 
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Figure 6: Tuguegarao City featuring the (a) georeferenced flood maps and (b) sampling points (circle dots) for validation of flood extent 
(light blue) using GEE.

Results and Discussion 
The flood was caused by continuous and excessive rainfall in No-
vember from 1 to 13, 2020. The pre and postflood datasets were 
determined based on rainfall data. As a result, an inundation map 

(Figure 7) dented by blue overlaid on the administrative boundar-
ies of the region and the affected land cover map (Figure 8) were 
created with a total area of 620.88 km2. The flood was most dense-
ly distributed along the low-lying stretch of the Cagayan River.  

              
  

  Figure 7: Final flood inundation map of typhoon Ulysses using GEE showing the terrain and 

provinces    affected   

   

Figure 7: Final flood inundation map of typhoon Ulysses using GEE showing the terrain and provinces affected  
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Figure 8: Affected land cover in Cagayan River Basin during the flood due to Typhoon Ulysses

To estimate flooded area and damages per province, the final flood 
inundation (slope and GSW deducted) was used. As shown in Ta-
ble 2, two provinces in the region were greatly affected by a series 
of typhoons in November 2020. Cagayan was the most affected 
(347.128 km2) with about 11.98% of its area flooded, followed 
by Isabela (273.162; 3.10%). On the other hand, Kalinga (0.545 
km2), Ifugao (0.043 km2), and Apayao (0.0002 km2) had minimal 
damage of less than a square kilometer flooded area due to their 

safer site and situation. The use of satellite-based flood inundation 
analysis like GEE will aid in the identification of the worst-affect-
ed districts in terms of submerged areas. Of the land classes listed, 
annual cropland was the most affected (98.90% of the total inunda-
tion), followed by built-up (1%) which affected a large population 
(~ 225,634). Therefore, it is critical to focus on lowering damage 
in annual croplands. 

Table 2: Area and percentage distribution of inundation per province and affected land cover in Cagayan River Basin after in-
tersecting inundation map using GEE

Prov-
ince

Provincial 
Area (km2)

Flooded 
Area (km2)

% Area wrt 
province

% Area of 
inundation

Annual 
Crop (km2)

Built-up Inland Wet-
land (km2)

Population 
Affected

% Affected 
Population Count Area (km2)

Cagayan 2,897.67 347.128 11.98% 55.91% 344.36 4,355 2.19 0.55 113,636 50.36%
Isabela 8,813.95 273.162 3.10% 44.00% 269.10 2,981 4.03 0.03 111,959 49.62% 
Kalinga 10,276.73 0.545 0.01% 0.09% 0.55 36 37 0.02%
Ifugao 2,503.45 0.043 0.00% 0.01% 0.04 4 3 0.00%
Apayao 3,913.88 0.0002 0.00% 0.00% 0.00 2 1 0.00%
TOTAL 28,405.68 620.879 2.19% 100.00% 614.05 7,378 6.22 0.58 225,634 100.00%

Two provinces are most affected: Cagayan (Table 3) and Isabela 
(Table 4). In Cagayan, Amulung has the largest total area affected 
in Cagayan Province and has the most population affected by the 
flood. Tuguegarao, the capital 139 city is the 5th most affected 

with a total area of 24.91 km2 flooded and 29,041 estimated affect-
ed population. There are 140 18 out of 28 municipalities affected 
in Cagayan Province.
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Province Annual Crop 
(km2) 

Built-up Inland Wetland 
(km2) 

Population Total (km2) 
Count Area (km2) 

Amulung 81.40 702 0.29 0.00 17,101 81.70 
Solana 71.32 745 0.11 3 71.44 
Alcala 44.84 755 0.79 0.43 10,505 46.07 
Enrile 38.19 401 0.07 10,248 38.26 
Tuguegarao City 24.75 366 0.15 29,041 24.91 
Gattaran 17.97 266 0.19 0.00 3,725 18.16 
Iguig 17.97 131 0.15 5,285 18.11 
Lasam 17.12 230 0.18 3,763 17.30 
Lal-Lo 16.30 236 0.09 3,271 16.43 
Baggao 6.18 153 0.06 2,337 6.24 
Santo Niño 4.64 114 0.04 1,126 4.68 
Piat 1.13 47 0.00 42 1.13 
Tuao 1.08 85 0.01 448 1.09 
Camalaniugan 0.59 36 0.02 190 0.61 
Aparri 0.57 47 0.01 0.08 619 0.66 
Peñablanca 0.28 32 0.01 114 0.29 
Rizal 0.03 4 3 0.03 
Allacapan 0.02 5 3 0.02 
Cagayan 344.36 4355 2.19 0.55 111,959 347.13 

Table 3: Summary of flooded areas and damages per municipality in Cagayan

Province Annual Crop 
(km2) 

Built-up Inland Wetland 
(km2) 

Population Total (km2) 
Count Area (km2) 

Ilagan 44.48 590 0.77 0.02 20,734 45.27 
44.48 590 0.77 0.02 20,734 45.27 

Santo Tomas 26.94 124 0.20 10,666 27.14 
Delfin Albano 26.21 243 0.53 5,738 26.73 
Santa Maria 24.50 166 0.12 8,724 24.62 
Tumauini 23.78 189 0.58 10,963 24.36 
Cabagan 23.31 146 0.25 14,655 23.56 
Cauayan City 21.66 215 1.04 11,126 22.70 
Reina Mercedes 14.70 61 0.23 7,452 14.93 
Quirino 12.18 208 0.02 2,020 12.20 
Gamu 10.23 142 0.05 3,968 10.27 
Naguilian 9.14 72 0.03 4,372 9.16 
Angadanan 6.28 134 0.02 1,984 6.31 
Burgos 5.42 85 0.00 1,819 5.42 
San Pablo 4.84 44 0.12 3,355 4.96 
Luna 4.57 40 0.00 1,128 4.58
Alicia 4.01 185 0.04 986 4.05 
San Isidro 2.40 110 0.00 1,169 2.41 

 Table 4: Summary of flooded area and damages per municipality in Isabela 
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Santiago City 1.42 60 0.01 1,405 1.44 
Echague 0.78 34 0.01 766 0.79 
Benito Soliven 0.45 14 49 0.45
Roxas 0.39 29 0.00 79 0.39 
San Mateo 0.31 24 0.00 130 0.31
Cabatuan 0.23 12 155 0.23 
Ramon 0.20 14 0.00 0.01 36 0.21 
Quezon 0.19 8 0.00 17 0.19 
San Manuel 0.16 6 47 0.16
Mallig 0.15 13 45 0.15
Aurora 0.10 8 28 0.10
Cordon 0.07 5 0.00 17 0.07
Isabela 269.10 2,981 4.03 0.03 113,633 273.16 

Isabela province, on the other hand, has a total flooded area of 
269.1 km2 and more than 100 thousand people affected. Ilagan as 
the capital city is the most affected with an area of 43.27 km2 and 
a 20,734 estimated population affected. There are 30 of 34 munic-
ipalities of Isabela affected by the flood. 

Tuguegarao City and Ilagan City, two of the most populated river-
ine towns in the region are located approximately 50-600 m away 
from the Cagayan River. Cagayan River Basin (CRB) is the larg-
est river basin in the Philippines but is densely populated along 
the flood-hit areas resulting in a high number of casualties. The 
spatial variation in the extent of floods can be attributed to many 
factors such as the precipitation, land cover types, and topographic 
conditions. Since Cagayan province is surrounded by the Sierra 
Madre mountain range to the east while the western boundaries are 
generally hilly and the central area is dominated by a wide valley, 
the province forms the lower basin of the Cagayan River therefore 
receiving a higher volume of floodwater. In the Philippines, from 
June to October, the southwest monsoon brings heavy rainfall. 
This heavy rainfall extends up to the early part of November. The 
successive days of rain exacerbated by typhoons led to flooding. 

Validation of flood extent using the data from the survey reveals 
95% accuracy. In many studies, Sentinel 1 (SAR) was demonstrat-
ed suitable for mapping flood areas due to its ability to penetrate 
cloud forms among others. This result are in line and supports 
the findings of previously conducted researches [3,17]. conclud-
ed that GEE algorithm performs well with an optimum accuracy 
of 96.44%. monitored flood events using multi-temporal Sentinel 
1 images [17]. The accuracy ranges from 92.8%-96.2% with an 
overall accuracy higher than 90%. Sentinel 1 perfectly separates 
the distinction of submerged areas to non-flooded areas allowing 
an accurate flood mapping possible. GEE that uses Sentinel 1 with 
medium-high resolution can therefore be used for rapid mapping 
of events with high accuracy. The assurance of high accuracy and 
more specific information embedded in local data is the prima-
ry benefit. The damage estimates provide useful information, not 
only in the form of numerical statistics but also in multi-boundary 

maps that can assist the decision-makers in visualizing areas that 
need the most help. This advantage of utilizing more detailed geo-
spatial data and readily available for processing makes it appropri-
ate for a rapid source of information. 

Conclusion and Recommendation 
This study has developed a methodology to determine the ex-
tent of damages not only in the area but also in number by inte-
grating high-resolution datasets that are readily available in the 
Philippines. The use of these data instead of the default materi-
als used by GEE may be utilized by local flood mappers without 
difficulty. The flood inundation and damage maps created using 
ArcGIS provide improved visualization of disaster severity across 
communities. The concurrent flood study imposes adopting an in-
tegrated approach with an emphasis on disaster risk mitigation, 
preparedness, and streamlining of the relief distribution system, 
with an emphasis on self-reliance on Local Government Units and 
Non-Governmental Organizations. Future work will be aimed to 
use the workflow applied in assessing flood damages for other ty-
phoon events in the Philippines. A set of technical and institution-
al recommendations are to be firmed up in consultation with the 
Cagayan River Basin Management Council and the Cagayan Val-
ley Regional Disaster Management Council. Through this study, 
the framework, approach, and methodology can be replicated 
across a range of geographical case studies arising due to floods. 
Further validations and comparisons against future similar studies 
are encouraged.   The framework is also recommended to be ap-
plied in diverse catastrophic scenarios, i.e. storm surges, tsunamis, 
and flash floods.  The framework could assist local authorities in 
estimating disaster impacted land features in a practical means. 
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Abstract 28 

Understanding the impact of climate change on watersheds using hydrologic 29 

models is timely and vital to dam management.  The study predicts changes in the 30 

inflow of the Magat reservoir using the Soil and Water Assessment Tool (SWAT) 31 

under the two Representative Concentration Pathways (RCP) Scenario for future 32 

centuries. The monthly calibration process (18 years) and validation process (10 33 

years) of the model resulted in an NSE of 0.73, R2 of 0.74, RSR of 0.52, PBIAS of 34 

8.38, and NSE of 0.56, R2 of 0.62, RSR of 0.66, and a PBIAS of 17.3 respectively. 35 

Under RCP 4.5 and RCP 8.5 scenarios, the model predicted that during the dry and 36 

normal years, there will be an average decrease of inflow by 18.56% and 5.41% but 37 

an increase of 19.25% during the wet years. Peak flow will likely occur in 38 

September for all the scenarios with a maximum discharge of up to 342.46 m3/s. 39 

The study recommends the integration of the model results to update the dam 40 

discharge protocol on the forecasting of monthly and annual inflow of the Magat 41 

Dam to aid the dam management in observing long-term changes in the flow of 42 

water going into the reservoir. 43 

 44 

Keywords 45 

Climate Change, framework, inflow, Magat reservoir, SWAT, watershed 46 

 47 

1. Introduction 48 

 49 

The Philippines is extremely vulnerable to climate change. Climate change threatens the 50 

country by increasing the intensity and frequency of storms and droughts (Principe 2012).  CAD-51 

PAGASA (2004) reported that the country is likely to be adversely affected by climate change since 52 

its economy is heavily dependent on agriculture and natural resources. Furthermore, Tolentino et al. 53 

(2016) stated in their modeling study that the consequences of climate change on Visayas and 54 
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Mindanao are projected to be relatively mild in comparison to Luzon, where a major rise in return 55 

intervals for maximum river flow rates is forecasted.  In Cagayan Valley, Luzon alone, precipitation 56 

is anticipated to increase. In terms of seasonality, the dry months (March-April-May) will remain dry, 57 

while during the rainy season, July and November will likely become more noticeable wet months. 58 

There are also signs that the frequency of heavy rainfall events, protracted dry spells, and extreme 59 

daytime temperatures is increasing (especially in Aparri) (Basconcillo et al. 2016). In the year 2020, 60 

the Philippines observed five consecutive typhoons from the end of October to early November. 61 

These disastrous events happened in less than a month causing damage in different regions of the 62 

Philippines – parts of Manila were shut down, the Bicol region was buried in mud, and Cagayan 63 

Valley was extremely flooded. From the recent typhoons, in Cagayan Valley alone, almost 151,600 64 

families were affected by the flood caused by the rising of the Cagayan River. The residents were 65 

also very eager to point out that the reason for flooding was the release of water from the Magat Dam 66 

although the Dam and Reservoir Management reiterated that the cause of massive flooding was the 67 

extreme continuous rainfall and deforestation in the whole basin. With incoming typhoons, protocols 68 

of the Dam Management include the release of water from the dam. Hence, people from downstream 69 

of the dam and the riverine area had a high chance of being flooded especially with the excessive 70 

amount of rain over the past months.  71 

One main impact area of climate change is on the hydrology of watersheds, where alterations 72 

in temperature and rainfall directly influence the dynamics and supply of water resources, and in the 73 

long run the present Stakeholders will struggle to meet their water requests (Arnell 1999). Different 74 

analysts have considered the possible impact of climate change on water quality and quantity in river 75 

basins. Thanh Nguyen et al. (2020) observed that extreme rainfall and severe river flooding events 76 

are anticipated to increase considerably in the future, ranging from 29 to 35% and 37 to 56% increase 77 

in rainfall and streamflow, respectively. Azari et al. (2016) found out that in the Gorganroud River 78 

Basin of Iran, climate change led to a 9.5 percent increase in annual streamflow and that sediment 79 

yield could increase by up to 83.9 percent. In the Philippines, there have been very few studies 80 

examining the threat of climate change. For instance, Panondi & Izumi (2021) found that observed 81 

changes in maximum mean annual rainfall, and maximum and minimum temperature correspond to 82 

increases in runoff (44.58–76.80%) and sediment yield (1.33–26.28%).  83 

With climate change, man-made and land-cover changes, the inevitable effects of this 84 

phenomenon on the hydrology of these watersheds will be evident in the following years. Hydrologic 85 

modeling has long been used by researchers to track these changes as they occur along these basins. 86 

To evaluate the impact of climate change on water resources, climate model data is integrated into 87 

hydrologic models (Naumann et al. 2019). The Soil and Water Assessment Tool (SWAT) is one of 88 

the most commonly used modeling software for assessing hydrologic impacts (Oo 2020). It has been 89 

recognized worldwide as an effective tool in water resource management for assessing the impact of 90 

the climate on water supplies and nonpoint sources of pollution in watersheds (Guiamel and Lee 91 

2020).  In the case of the Magat watershed and its reservoir, it is important to understand the impact 92 

of climate change on the inflow of the dam using hydrologic models. However, no current studies are 93 

being undertaken and there are no model-based forecasts for long-term or seasonal flow. 94 

Taking into account the probability of streamflow changes might help water resource 95 

stakeholders make better decisions (Sivakumar 2011; Ouyang et al. 2015). Better decisions in this 96 

context can be outcomes of a strong impact assessment towards reducing climate change risks through 97 

adaptation strategies, perhaps, for the agriculture sector (Abbasi et al. 2020). One of the most difficult 98 

aspects of reservoir operations management is estimating inflow parameters accurately (Fourcade & 99 

Quentin 1994). Reservoir managers in the Philippines base their inflow estimates on water level 100 

information (Sarmiento et al. 2010). For instance, the Magat Dam reservoir is presently operated by 101 

an Operation Rule Curve jointly developed in 1985 to optimize the utilization of the water stored in 102 

the Magat reservoir. The 37-year discharge protocol of dam management needs updating using 103 

current science-based tools.   104 

With the absence of alternative estimation and forecasting techniques, the Magat reservoir 105 

managers adapt their management policies to the present measurements and rainfall statistics. 106 

Moreover, the temporal distribution of river discharge, especially the extreme value, brings water-107 

related disasters. Thus, the operation of reservoirs has been a great concern in the field of operational 108 
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hydrology. It is not easy, however, to construct new facilities to cope with the situation, yet the 109 

nonfacility-based countermeasures like the effective utilization of dam reservoirs are getting more 110 

important.  111 

The main objective of this study is to assess the impacts of climate change on the inflow of the 112 

Magat reservoir using the SWAT Model towards the development of a dam discharge protocol 113 

framework. Climate forecasts from Representative Concentration Pathways (RCP) Scenario were 114 

used to project inflow changes in the watershed during the Mid and Late 21st Centuries.  The 115 

Methodology of the study is presented in Section 2. The result and discussion are presented in Section 116 

3 followed by the conclusion of the study in Section 4.  117 

2. Materials and Methods  118 

 119 

2.1 The Study Area 120 

 121 

The Magat watershed and its reservoir are located in the northern part of the Philippines 122 

covering major portions of Ifugao, Nueva Vizcaya, and parts of Isabela provinces. Magat Watershed 123 

with its 7 subbasins, is highly forested with a predominant soil classification of clay loam and highly 124 

steep slopes (see Figure 1). Located within the watershed, the Magat Dam and its reservoir are one 125 

of the largest dams in the Philippines. It is a multipurpose dam that is used primarily for irrigating 126 

86,887 hectares of agricultural lands, flood control, and power generation through the Magat 127 

Hydroelectric Power Plant. The dam was constructed in 1978 and completed on October 27, 1982.  128 

  129 

Figure 1. Location of Magat Watershed and its Subbasin.  130 
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 131 

Figure 2. Soil Type (a), Land Cover (b), and Elevation (c) of Magat Watershed.  132 

2.2. Data used 133 

 134 

The spatial data that were used in the study included a 5x5 m resolution Digital Elevation 135 

Model (DEM), 2015 land use/cover, soil classification, and 31-year historical climatic/weather data. 136 

The input parameters for reservoir and dam operation were obtained from the National Irrigation 137 

Administration Magat River Integrated Irrigation System Dam and Reservoir Division (NIA-MARIIS 138 

DRD). The DEM of the Magat watershed which was extracted from the Digital Terrain Model (DTM) 139 

issued by the National Mapping and Resource Information Authority (NAMRIA) was subjected to 140 

a 

c 

b 
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watershed delineation. Moreover, the weather data were taken from the meteorological station of 141 

PAG-ASA, while the daily rainfall data were provided by the NIA-MARIIS DRD specifically from 142 

the two rain gauge stations inside the basin. On the other hand, the land cover map was obtained from 143 

NAMRIA, while the soil map was from the Bureau of Soil and Water Management (BSWM). Some 144 

of the soil and land cover data were validated and gathered from the field survey per sub-basin.  145 

The monthly inflow data (1993-2020) that were used as a baseline in the study were gathered 146 

from NIA-MARIIS DRD.  147 

 148 

2.3 SWAT Model 149 

  150 

2.3.1. Description of SWAT Model 151 

 152 

  In several watersheds, the Soil and Water Assessment Tool (SWAT) Model has been used to 153 

model the effects of climatic change on hydrologic and biogeochemical cycles (Arnold et al.1998). 154 

SWAT employs hydrologic response units (HRUs) to explain spatial variation in land cover and soil 155 

types within a watershed as a physically based model. For each HRU, the model calculates essential 156 

hydrologic components such as surface runoff, baseflow, ET, and soil moisture change. According to 157 

Neitsch et al. (2011), the simulation of the hydrological cycle in SWAT is separated into a land phase 158 

and a water phase. The land phase is based on the water balance equation which is calculated 159 

separately in each sub-watershed using the following formula:  160 

                   𝑆𝑊𝑡 = 𝑆𝑊0 + ∑𝑡
𝑖=1 (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)       (1) 161 

where: 162 

SWt = final soil water content at time t (mm), 163 

SWo = the initial soil water content (mm), 164 

t = time (days), 165 

Rday = total precipitation on day i (mm), 166 

Ea = total evapotranspiration on day i (mm), 167 

Qsurf = total surface runoff on day i (mm), 168 

wseep = seepage from the bottom soil layer on day i (mm), and 169 

Qgw = total groundwater flow on day i (mm). 170 

 171 

On the other hand, the water phase of the hydrologic cycle depicts the routing of runoff in the 172 

stream channel using either a variable storage coefficient method or the Muskingum routing method. 173 

The concentration time in the watershed is estimated using Manning’s formula which considers both 174 

the overland and channel flow. Meanwhile, surface runoff occurs whenever the rate of precipitation 175 

exceeds the rate of infiltration. Using the daily rainfall data, SWAT simulated the surface runoff using 176 

the Soil Conservation Service Curve Number (SCS CN) method (USDA-SCS 1972) with the 177 

following formula: 178 

 179 

𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦−𝐼𝑎)

2

(𝑅𝑑𝑎𝑦−𝐼𝑎+𝑆)
  (2) 180 

  where: 181 

Qsurf = accumulated runoff or rainfall excess (mm),  182 

Rday = rainfall depth for the day (mm),  183 

Ia = initial abstractions including surface storage, interception and infiltration prior to runoff (mm), 184 

and 185 

S = retention parameter (mm). 186 

 187 

 188 

 This study applied the following procedure to predict the inflow of the Magat reservoir using SWAT.  189 

The method throughout the model simulation was clearly required for each phase. A clear overview 190 

of the approaches used with the SWAT model is also provided in Figure 3, which summarizes the 191 

analytical process.  192 
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193 

Figure 3. Methodological Framework of the SWAT Model used in the study. 194 

 195 

First, input weather datasets were prepared to match the required input formats. The processed 196 

weather dataset was loaded and utilized for the entire modeling process.  The Magat Watershed 197 

underwent processing and unmasking of the geospatial information, including the DEM, land use, 198 

and land cover. The watershed is then delineated in order to establish the direction of the flow and 199 

the accumulation. The HRUs were produced by ArcSWAT using the processed land use and land 200 

cover. Then, initial values of the parameters were set up and adjusted after calibrating simulation 201 

results using the SWAT-CUP SUFI2 and manual calibration. Actual inflow data were divided to be 202 

used during the calibration and validation processes. Once the model is deemed acceptable, further 203 

simulations incorporating the climate projections by PAG-ASA were done to determine the impacts 204 

of climate change on the inflow of the reservoir. Based on this, a proposed dam discharge protocol 205 

framework was recommended.  206 

 207 

2.3.2. SWAT Model Set-up 208 

 209 

Simulation, calibration, and validation were done using long-term inflow data gauged along 210 

the Magat River. Also, 31-year (1990-2020) historical data was simulated with a 3-year warm-up 211 

period (1990-1992). Moreover, 18 years (1993-2010) of the monthly simulated historical data were 212 

used in calibration.  213 

In this study, calibration was done both ways, manually using the trial-and-error method and 214 

SWAT CUP SUFI2. The initial calibration was performed manually by means of adjusting the most 215 

influential parameters. The trial-and-error approach was done until the model was already statistically 216 

acceptable. The result was imported to SWAT CUP SUFI2, a software used for further calibration.  217 

On the other hand, evaluation statistics were used to determine the reliability of the calibrated 218 

model. The Coefficient of Determination (R2), Nash-Sutcliffe Model Efficiency (NSE), Root Mean 219 

Square Error-observations standard deviation ratio (RSR), and percent bias (PBIAS) were used to 220 

measure the acceptability of the SWAT model to imitate temporal trends of the observed data (Table 221 

1). 222 

 223 
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Table 1. Model Performance Evaluation Indices 

Indices Statistically accepted value 

Coefficient of determination (R2) > 0.5 (50%) 

Nash–Sutcliffe efficiency (NSE) > 0.5 (50%) 

RMSE-observations standard deviation ratio (RSR) Low RSR, <0.70 (70%) 

Percent Bias (PBIAS) +/-25% 
 224 

2.4 Climate Change Scenarios 225 

 226 

Projected climate scenarios used in the assessment were based on the recent climate projections 227 

published by the Department of Science and Technology-Philippine Atmospheric, Geophysical, and 228 

Astronomical Services Administration (DOST-PAGASA), which is responsible for providing 229 

weather updates, forecasts, and projections produced by these climate projections. The projected 230 

effects of climate change include percentage increases in temperature and changes in rainfall in the 231 

mid-21st century (2036-2065) and late 21st century (2070-2099). These scenarios were primarily 232 

chosen for the study because these would likely happen in the future and be used for impact studies 233 

(DOST-PAGASA 2018). They suggested two GHG emission trajectory options for the future: the 234 

moderate level (RCP 4.5) and the high level of GHG emissions (RCP 8.5). The second was 235 

recommended for impact studies, with the first being the scenario that is most likely to occur in the 236 

future. For the two time slices, there are uncertainties in both climate change scenarios. In addition, 237 

the medium-range emission scenarios were based on historical trends, while the high-range was 238 

developed for impacts and adaptation points of view. The medium-range scenario represents a carbon 239 

dioxide (CO2) level that is projected to reach 703 ppm in 2100, while the high-range scenario predicts 240 

up to 836 ppm. The mid and high-range scenarios were then further categorized into three percentiles: 241 

lower bound which means the driest possible change; normal bound which denotes the normal 242 

possible change; and the upper bound which indicates the wettest possible change. For the two time 243 

slices, there are uncertainties in both climate change scenarios. The projections of changes in both 244 

time periods for the dry, normal, and wet years reflected this uncertainty. This indicates that there are 245 

three possible outcomes for the middle of the twenty-first century, between 2036 and 2065, and the 246 

late twenty-first century, between 2070 and 2099: dry years (severe drought), wet years (extreme 247 

rainfall events), and normal years (no extreme drought or extreme rainfall conditions). The resolution 248 

of the projections is 25 km by 25 km.   249 

2.5.  Dam Discharge Protocol Framework Development 250 

The framework was developed to include the results of the model and the study as a basis for 251 

long-term forecasting of dam management.  The localized SWAT model developed can be used as 252 

the engine to a decision support system to estimate the seasonal and monthly changes in reservoir 253 

inflow. They can modify their monthly operational rule curve depending on the changes in climate 254 

using the local SWAT model.   255 

3. Results 256 

3.1. Climate Projections in the Magat Watershed 257 

a) Projected Rainfall for the Mid-21st Century. During these years, up to 48.4% increase in 258 

rainfall can be noted under RCP 4.5 while up to 39.9% increase in precipitation can be seen 259 

under RCP 8.5. These increases in rainfall will likely happen during the Wettest years.  A 260 

decrease in rainfall up to 35.8% can also be noted under RCP 4.5 while for RCP 8.5, a notable 261 

decrease of 27.8% can happen. These descending changes will likely happen during the Driest 262 

years.  263 

b) Projected Mean Temperature for the Mid-21st Century. An increase in temperature in the 264 

Watershed under both scenarios can be observed from the tables below. Under RCP 4.5’s 265 
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driest, normal and wettest years, the increases in temperature were noted to go up to 1°C, 266 

1.3°C, and 2.0°C respectively. Furthermore, under RCP 8.5, an increase in temperature by 267 

1.4°C, 1.7°C, and 2.5°C can be observed for its driest, normal and wettest years, respectively. 268 

c) Projected Rainfall for the Late-21st Century. During the 21st century, a projected increase of 269 

rainfall under RCP 4.5 can go up to 49.6% while for RCP 8.5, it can go as high as 51.1 %. 270 

These events will likely happen during the wettest years. On the other hand, projected rainfall 271 

can decline up to 26.8% under RCP 4.5 while for RCP 8.5, it can go down to a 36% decrease 272 

in rainfall. These declines in rainfall will likely happen during the driest years. 273 

d) Projected Mean Temperature for Late 21st Century. Similar to the Mid-21st Century, there 274 

will be a notable increase in temperature for both scenarios. During RCP 4.5’s driest year, the 275 

temperature can increase up to 1.4°C while during the normal years, it can go as high as a 276 

1.8°C increase of temperature. Meanwhile, in the wettest years, the temperature can increase 277 

up to 2. 7°C.Furthermore, RCP 8.5’s driest, normal and wettest years noted an increase in 278 

temperature by 2.8°C, 3.4°C, and 4.5°C respectively. 279 

3.2. Simulation, Calibration, and Validation Results of SWAT Model 280 

3.2.1. Model Parameters 281 

  Table 2 shows the 17 most influential parameters that were calibrated in the model using 282 

manual and SWAT-CUP Calibration. These parameters directly influence the inflow along the Magat 283 

Watershed into the reservoir. These parameters were related to groundwater (ALPHA_BF, 284 

GW_DELAY, GWQMN, GW_REVAP, RCHRG_DP), soil properties (SOL_AWC, SOL_K, 285 

SOL_BD), HRU factors (HRU_SLP, LAT_TIME, ESCO, EPCO), routing (CH_K2, ALPHA_BNK), 286 

watershed management (CN2) and basin management (SURLAG).  287 

 288 

Table 2. Calibrated Parameters in the SWAT Model 
 
Parameter Description Calibrated 

Value 
1. CN2.mgt Initial SCS curve number for moisture condition 

II 
0.157 

2. ALPHA_BF.gw              Baseflow Alpha Factor 0.98 
3. GW_DELAY.gw            groundwater delay 0.1 
4. GWQMN.gw                 Threshold depth of water in the shallow aquifer 

required for return flow to occur 
600 

5. GW_REVAP.gw              Groundwater "revap" coefficient  0.02 
6. ESCO.hru                 Soil Evaporation compensation factor 1 
7. EPCO.hru Plant uptake compensation factor 1 
8. CH_K2.rte Effective Hydraulic Conductivity in the main 

channel alluvium 
142.31 

9. ALPHA_BNK.rte            Baseflow Alpha Factor for bank storage  0.98 
10. SOL_AWC ().sol          Available Water Capacity of the soil Layer 0.01 
11. SOL_K ().sol Saturated Hydraulic Conductivity 193.69 
12. SOL_BD ().sol          Moist Bulk Density 1.2 
13. OV_N.hru  Manning's value for overland flow 0.01 
14. RCHRG_DP.gw  Deep Aquifer percolation factor 0.01 
15. HRU_SLP.hru Average Slope Steepness 0.6 
16. SURLAG.bsn Surface runoff lag coefficient 4 
17. LAT_TIME.hru  Lateral flow travel time 30 

 289 

3.2.2. Calibration and Validation Results 290 

 291 

 The calibration and validation resulted in a satisfactorily acceptable model. Calibration 292 

showed that the model had an NSE of 0.73, R2 of 0.74, RSR of 0.52, and PBIAS of 8.38 which were 293 

all considered statistically acceptable when compared to the indices that were set. From Figure 4a, 294 
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the graph shows that the model generally underestimated the peak flows. This is one of the known 295 

limitations of the SWAT model. Although studies pertaining to the modeling of the inflow of a 296 

reservoir is very limited in the country, studies regarding streamflow, which is mostly associated with 297 

and similar to inflow, are conducted. For instance, Alejo (2019) satisfactorily calibrated and validated 298 

a SWAT Model in Maasin River Watershed in Laguna, the Philippines using actual streamflow. The 299 

calibration process resulted in 0.82 R2, 82% NSE, 0.024 RSR and PBIAS of -3.7%. This suggests 300 

that SWAT can be locally applied in river basin conditions in the country.  301 

 302 

(a) 303 

 304 

(b) 305 

Figure 4. Monthly Simulated and Actual Inflow for Calibration Period (a) and the Scatter Diagram 306 

of the Simulated Inflow and Actual Inflow (b) 307 

 308 

Moreover, the validated SWAT Model yielded satisfactory results. The model had an NSE of 309 

0.56, R2 of 0.62, RSR of 0.66, and a PBIAS of 17.3. This means that the model satisfactorily predicted 310 

the inflow of water to the Magat Reservoir based on the validation results. However, like the 311 

calibration results, the model underestimated most of the peak flows as seen in Figure 5a. Validation 312 

results showed model accuracy values on NSE, R2, PBIAS, and RSR of 0.41, 0.57, 25.09%, and 0.71, 313 

respectively. Although the model was considered satisfactory, it can be observed that there was a 314 

drop in the performance of the validation results compared to the calibration results.  315 

 316 
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 317 

(a) 318 

(b) 319 

Figure 5. Monthly Simulated and Actual Inflow for Validation Period (a) and the Scatter Diagram of 320 

the Simulated Inflow and Actual Inflow (b). 321 

 322 

3.3. Impact of Climate Change on the Inflow of Water to the Reservoir 323 

To understand the impact of increasing temperature and rainfall changes on the water balance of 324 

the watershed, the calibrated SWAT model was used. The downscaled climate projection provided 325 

by PAG-ASA was used as the future scenario for both changes in rainfall and temperature. There are 326 

no current studies observing the impacts of climate change on the inflow of the Magat reservoir or 327 

any river basin in the country in particular.  328 

However, numerous analyses of the effects of climate change on the streamflow of these basins 329 

exist. An assessment of climate change impacts on the streamflow of the Mun River in the Mekong 330 

Basin, Southeast Asia using the SWAT model was conducted by Li and Fang (2021). Using the 331 

SWAT Model, they predicted that under scenarios RCP4.5, and RCP8.5, the mean annual streamflow 332 

of the basin decreased by 11.1%, and 7.6%, respectively, during the 2030s and increased by 40.9%, 333 

and 43.3% during the 2060s. Streamflow was projected to increase by 3.1% and 5.3% in the 2080s 334 

under the RCP4.5 and RCP8.5 scenarios. However, during the wet years, the streamflow was 335 

projected to increase by 45.7%, and 48.9% under RCP4.5, and RCP8.5, respectively. Notably, the 336 

streamflow in the dry season was projected to decrease in all future decades under these RCP 337 

scenarios—especially at the end of the century. From this example study, the impact of climate 338 

change on the flow of water is shown below corresponding to Scenarios 1,2,3, and 4.  339 

 340 

3.3.1. Scenario 1: RCP 4.5 (Mid-21st Century) 341 
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For the RCP 4.5 scenario for the Mid-21st Century, the model predicted that there will be a 342 

decrease of inflow by 18.27% for dry years and 7.42% for normal years, but for wet years, there will 343 

be an increase of inflow by 10.79%.  344 

 345 

Figure 6. Monthly Estimation of Future Inflow under RCP 4.5 Scenario during the Mid-21st Century. 346 

 347 

3.3.2. Scenario 2: RCP 8.5 (Mid-21st Century) 348 

The model estimated a 15.21% decline in inflow during the dry years for the RCP 8.5 scenario 349 

in the mid-21st Century. However, there will be a 0.53% and 21.88% increase in inflow during normal 350 

and wet years, respectively. 351 

 352 

Figure 7. Monthly Estimation of Future Inflow under RCP 8.5 Scenario during the Mid-21st Century. 353 

 354 

3.3.3. Scenario 3: RCP 4.5 (Late 21st Century) 355 

Under this scenario, the model projected that the inflow would reduce by 17.41% and 4.51%, in 356 

the dry and normal years respectively but during the wet years, there will be an 18.57% increment of 357 

inflow.  358 
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 359 

Figure 8. Monthly Estimation of Future Inflow under RCP 4.5 Scenario during the Late 21st Century. 360 

 361 

3.3.4. Scenario 4: RCP 8.5 (Late 21st Century) 362 

Both normal and dry years were estimated to decline by 23.33% and 10.21% under the RCP 8.5 363 

Scenario for the late 21st century. However, the wet years for this century were estimated to increase 364 

by 25.76%. 365 

 366 

Figure 9. Monthly Estimation of Future Inflow under RCP 8.5 Scenario during the Late 21st 367 

Century. 368 

 369 

Future Peak Flow 370 

 371 

3.3.5. Scenario 1: RCP 4.5 (Mid-21st Century) 372 

For the RCP 4.5 scenario for the mid-21st century, the predicted peak flow for dry, normal, and 373 

wet years will most likely occur in the month of September with an average of at least 187.08 m3/s., 374 
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227.09 m3/s, and 264.77 m3/s, respectively (see Table 3).  375 

 376 

Table 3. Peak Flow for RCP 4.5 Scenario for Mid-21st Century 
Scenario Peak Flow Q (m3/s) 
Dry (Lower Bound) September 211.88 
Normal (Median Bound) September 245.76 
Wet (Upper Bound) September 285.88 

 377 

3.3.6. Scenario 2: RCP 8.5 (Mid-21st Century) 378 

The estimated peak flow will take place in the month of September for dry, normal, and wet 379 

years respectively. The Magat reservoir is expected to have an average peak flow of at least 229.72 380 

m3/s for the dry years, 275.69 m3/s for the normal years, and 321.98 m3/s for the wet year as shown 381 

in Table 4.  382 

 383 

Table 4. Peak Flow for RCP 8.5 Scenario for Mid-21st Century. 

Scenario Peak Flow Q (m3/s) 
Dry (Lower Bound) September 229.72 
Normal (Median Bound) September 275.69 
Wet (Upper Bound) September 321.98 

 384 

3.3.7. Scenario 3: RCP 4.5 (Late 21st Century) 385 

The predicted peak flow will most likely happen during the month of September. For the Dry 386 

Years, the average peak flow is expected to have at least 220.36 m3/s. During the Normal and Wet 387 

years, the average peak flow is expected to have at least 257.84 m3/s and 308.73 m3/s (see Table 5).  388 

 389 

Table 5. Peak Flow for RCP 4.5 Scenario for Late-21st Century.  
Scenario Peak Flow Q (m3/s) 
Dry (Lower Bound) September 220.36 
Normal (Median Bound) September 257.84 
Wet (Upper Bound) September 308.73 

 390 

3.3.8. Scenario 4: RCP 8.5 (Late 21st Century) 391 

Under the RCP 8.5 Scenario during the late 21st century, the peak flow will most likely happen 392 

during the month of September for the dry years with at least 201.70 m3/s. Similarly, during the wet 393 

years and normal years, the peak flow will likely happen during the month of September with 342.46 394 

m3/s and 233.14 m3/s respectively as shown in Table 6. 395 

 396 

Table 6. Peak Flow for RCP 8.5 Scenario for Late-21st Century 
Scenario Peak Flow Q (m3/s) 
Dry (Lower Bound) September 201.70 
Normal (Median Bound) October 233.14 
Wet (Upper Bound) September 342.46 

 397 

3.4 Recommendation of Framework towards the Development of Dam Discharge Protocol 398 

 399 

Figure 10 shows the recommended framework for the upgrading of the Dam Discharge Protocol 400 

of Magat reservoir incorporating the developed SWAT Model emphasizing the predictions for annual 401 

and monthly streamflow forecasting.  402 
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 403 

  Figure 10. Framework for Upgrading the Dam Discharge Protocol Using SWAT Model. 404 

The amount of rainfall that will trigger pre-release in the dam depends on the current elevation 405 

of water in the dam. For example, the dam management decided to release about 189 m3/s during 406 

Typhoon Ulysses (International name Vamco) in 2020 when the current dam elevation was 190.92. 407 

The typhoon brought almost 300 mm of rainfall in the Magat watershed which brought about 7,200 408 

m3/s per second of dam inflow.  409 

Rule curves for reservoirs are based on desired end-of-month storage; as a result, the key choice 410 

to be made each month is how much storage to provide for the reservoir. Once the monthly inflows 411 

are known, the monthly outflows through the turbines and gates are determined. The end-of-month 412 

storage targets depend on many factors that require inputs, especially on the water demands from 413 

irrigation, hydropower, and domestic water supply. This study, however, is limited to providing the 414 

monthly inflows and proposing a framework for dam management use. 415 

The proposed framework is focused on the forecasting of monthly and annual inflow of the 416 

Magat Dam. For particular cases, it can also be used for seasonal forecasting along the river basin. 417 

This will help the dam management to observe long-term changes in the flow of water going into the 418 

reservoir. This will contribute to the awareness of the availability of water to be stored. With PAG-419 

ASA’s latest initiative in climate projections, the impacts of any changes in the climate will also be 420 

anticipated. The Upgraded Dam Discharge Protocol should be used by the NIA-MARIIS DRD to aid 421 

decision-making on seasonal scenarios, particularly on the inflow of the Magat reservoir.  422 

 423 

4. Discussion 424 

 425 

Climate change will lead to increased reservoir inflow during wet years largely due to a 426 

substantial increase in rainfall input to the watershed. It will also lead to a significant reduction in 427 

reservoir inflow during dry years due to decreased rainfall. Hydrological models provide a helpful 428 

platform for reliable estimates of water supply under many drivers of changes in watersheds which 429 

include climate changes. The SWAT model has been continuously supporting many water resources 430 

research in this avenue. The majority of these researchers in the Philippines have studied the ability 431 
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of the SWAT model for streamflow estimates. For example, Alejo & Ella (2019), used SWAT for 432 

streamflow estimates for irrigable area determination, Araza et al. (2021) for river flow analysis. 433 

Other local SWAT studies focused solely on land use change impact assessments and streamflow 434 

changes (Araza et al.  2021). Similarly, Alejo (2019) satisfactorily calibrated and validated a SWAT 435 

Model in Maasin River Watershed in Laguna, Philippines using actual streamflow. Reyes (2017) also 436 

applied the SWAT Model to predict streamflow and sedimentation in Wahig-Inabanga Watershed, 437 

Bohol, Philippines. This study focused on the calibration and validation of reservoir inflow using the 438 

SWAT model as support to dam management actions and plans.  439 

The most sensitive parameters for reservoir inflow were ALPHA_BF, GW_DELAY, GWQMN, 440 

GW_REVAP, RCHRG_DP (groundwater), SOL_AWC, SOL_K, SOL_BD (soil properties), 441 

HRU_SLP, LAT_TIME, ESCO, EPCO (HRU factors), CH_K2, ALPHA_BNK (routing), CN2 442 

(watershed management) and SURLAG (basin management). The parameters calibrated in this study 443 

can also be seen in a SWAT study conducted by Panondi &and Izumi (2021) in the Pulangi River 444 

Basin (PRB), which is located on the Mindanao Island of the Philippines. They pointed out that CN2, 445 

SOL_AWC, HRU_SLP, GW_DELAY, and CNCOEFF are the most sensitive parameters in the 446 

combined simulation analysis of streamflow and sediment yield. A reservoir modeling study by 447 

Beharry et.al (2021) found 16 sensitive parameters (ALPHA_BNK, CH_K2, GW_DELAY, 448 

ALPHA_BF, CH_N2, CN2, EPCO, OV_N, REVAPMN, SURLAG, SOL_K, SOL_BD, GWQMN, 449 

SOL_AWC, and GW_REVA) in their study. Almost the same parameters were deemed sensitive in 450 

this study.  451 

 Meanwhile, a study conducted by Araza et al. (2021) in the Abuan Watershed found that 452 

parameters directly influencing its peak and low flows were the coefficients on runoff (CN2 and 453 

SURLAG), baseflow (ALPHA BF), soil evaporation (ESCO), and soil depth for baseflow (GWQN). 454 

The model underestimated the peak flows in the study area which has been common in many SWAT 455 

studies (Le & Principe 2017; Tolentino & Ella 2016). According to research by Gassman et al. (2007), 456 

SWAT overestimated streamflow during dry years when low flows occurred and underestimated 457 

streamflow during wet years when big flows are presumably anticipated. In a separate USDA study, 458 

it was shown that SWAT underestimated river flows in the summer but underestimated them in the 459 

winter.    460 

The SWAT performance was better during calibration which has been commonly observed in 461 

other SWAT studies. This was also seen in the SWAT model study by Briones et al. (2016). Their 462 

validation also yielded acceptable simulation results although NSE and R2 dropped to 0.61 and 0.68 463 

from calibrated results of 0.85 and 0.86. They also stated that this marked decrease in the model’s 464 

performance can be attributed to several factors and one of the factors can be associated with LULC 465 

change between the calibration period and validation period. In order to estimate streamflow, Reyes 466 

(2017) also successfully calibrated and verified the SWAT model. However, it should be emphasized 467 

that the calibration and validation periods for these researches are shorter (4 to 6 years), and they are 468 

almost the same duration. In comparison, the SWAT model used in the current study for the Magat 469 

watershed is significantly longer, lasting 18 and 10 years, respectively. It is crucial to use longer 470 

calibration and validation periods since they tend to produce better model results than shorter ones, 471 

mostly because of making effects. Additionally, there is a significant difference in simulation length 472 

between calibration and validation, which might justify the impact of simulation length on the model 473 

results of the present study.   474 

It has been crucially shown that there would be projected shifts in the months where the peak 475 

reservoir inflow occurs.  Furthermore, because of the significant increase in rainfall input to the Magat 476 

watershed brought on by climate change, there will be an increase in reservoir inflow during rainy 477 

years. Less rainfall during dry years will also result in a large decrease in reservoir inflow. Moreover, 478 

it has also been importantly shown that there will be projected shifts in months where peak inflow 479 

occurs. Various studies have shown the adverse varied impacts of climate changes on water resources 480 

in the Philippines. Climate change has been shown to decrease water availability in reservoirs as a 481 

result of decreased water supply and increased water demand which will eventually lead to reduced 482 

irrigable areas, especially in dry years (Alejo & Alejandro 2022). The threat of severe flooding and 483 

excessive soil loss due to increased runoff and sediment yield are threats to the sustainability of 484 

ecosystems due to climate change (Panondi & Izumi 2021). Croplands are at risk when this happens 485 
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and would lead to huge economic losses as estimated by Araza et al. (2020). It is then important that 486 

the cropping calendar in the vast service area of the reservoir be made dynamic or retrofitted to future 487 

changes in climate to make the irrigation system climate resilient. The fully calibrated and validated 488 

SWAT model for the Magat watershed provided adequate estimates of reservoir inflow. The 489 

increased peak inflow during wet years might lead to potential flooding downstream of the reservoir 490 

when the dam management is not appropriately planned. The significantly reduced inflow during dry 491 

years will lead to reduced water supply for irrigation and hydropower capacity of the dam. These 492 

reductions in inflow in the reservoir during dry seasons convey a strong indication that the reservoir 493 

may become dry in the near future (Joshi & Makhasana 2020). An increase in the inflow, however, 494 

may require a change of the operation rules of the reservoir in order to adapt to the new changing 495 

reality (Muhammad et al. 2020). However, Rule curves for reservoirs are based on desired end-of-496 

month storage; as a result, the key choice to be made each month is how much storage to provide for 497 

the reservoir. Once the monthly inflows are known, the monthly outflows through the turbines and 498 

gates are determined. The end-of-month storage targets depend on many factors that require inputs, 499 

especially on the water demands from irrigation, hydropower, and domestic water supply. This study, 500 

however, is limited to providing the monthly inflows and proposing a framework for dam 501 

management use. The SWAT model developed can provide a basis for predicting monthly to annual 502 

reservoir inflow trends for long-term projections.  503 

5. Conclusion 504 

 505 

 The impact of climate change on water resources is inevitable, however, through hydrologic 506 

models, it is quantifiable. This study using the SWAT model implies that this method can adequately 507 

predict the monthly inflow of the Magat reservoir under different climate change scenarios for the 508 

Mid-21st Century and Late 21st century. The latest and most accurate data from different agencies 509 

were used as inputs in the model as well as the downscaled climate projection from PAG-ASA.  510 

Model performance was deemed satisfactory as the model attained an NSE of 0.73, R2 of 0.74, RSR 511 

of 0.52, PBIAS of 8.38, and NSE of 0.56, R2 of 0.62, RSR of 0.66, and a PBIAS of 17.3 respectively. 512 

However, the model tends to underestimate the peak flows which is a known limitation of the SWAT 513 

Model. The study found that if the climate change would worsen and reach the RCP 4.5 and RCP 8.5 514 

scenario in the basin level, there will be a significant decrease in inflow during their dry and normal 515 

years, but a substantial increase will occur during the wet years. These decreases in reservoir inflow 516 

during dry seasons serve as a clear warning that the reservoir may soon become dry. However, a rise 517 

in the inflow might necessitate modifying the reservoir's operating guidelines in order to 518 

accommodate the new, shifting reality. In addition, the highest inflow of water to the reservoir is 519 

anticipated from the month of September followed by October to December since this is already the 520 

rainy season in the country.  521 

 Climate change impact studies have been widely explored for streamflow estimations using 522 

SWAT to quantify available river flows and their fluctuations. This study focused on the estimation 523 

of reservoir inflow to support dam management actions, decisions, and plans. Given the importance 524 

of the dam specifically to the agriculture sector, it is necessary to take steps to review the existing 525 

Dam and Reservoir policy and adopt mitigation strategies for climate change problems. 526 

Consequently, this study will contribute to the development of the framework for the upgrading of 527 

the Dam Discharge Protocol and Dam Management focusing on seasonal forecasting along river 528 

basins. This will help the dam management to observe long-term changes in the flow of water going 529 

into the reservoir. Also, the results could pave the way toward the design of various interventions to 530 

take care of the watershed and its river networks and reduce the negative impacts of climate change 531 

on the Magat reservoir in the future. Additionally, the study demonstrated a scientifically sound 532 

methodology to quantify the impacts of climate change and its potential as a decision support system 533 

for dam management in river basins in the Philippines and other countries. 534 
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Abstract: River Basins are highly significant resources that contribute to agro-industrial and
domestic development. This study was conducted to assess the socio-economic
impacts of climate change on the vulnerability of a significant river basin in the
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Abstract 

 

River Basins are highly significant resources that contribute to agro-industrial and 

domestic development. This study was conducted to assess the socio-economic 

impacts of climate change on the vulnerability of a significant river basin in the 

Philippines, the Magat River Basin, to drought by considering agriculture as the 

major sector of focus. The results of this study imply that the current drought 

susceptibility of Magat Watershed is at 1.9 – 3.39 min-max scale or from low to 

above moderate, where the basin's Sensitivity and Exposure, account for 57% and 

31% of the total vulnerability, respectively. And that the resulting adaptive capacity 

has a mitigating factor of only 12%, thereby construed to be very low. Averagely, 

the Santa Fe and Subbasin 2 sub-watersheds are identified to be moderately 

susceptible to drought with an average rating of 3.1 and 3.25 respectively.  

Meanwhile, the average drought vulnerability rating of other subbasins is between 

2.08 and 2.91 which is from a low to an approximately moderate level. The overall 

drought susceptibility of the basin is projected to increase due to climate change 

under future climate scenarios up to 30% (High) of the current level. Catalyzing 

effective policies and climate change governance are highly encouraged to inhibit 

further improve mitigation and adaptation measures. 
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Introduction:  

 

In the recent past, climate scientists have observed an increasing trend in temperature and 

have forewarned us that as we move forward, it has become imperative for us to witness the natural 

catastrophes precipitated from climatic variations induced by unprecedented global warming which 

reflects anthropogenic activities in terms of increment carbon footprint and greenhouse gas emissions 

(Houghton, et al., 2001). In our contemporary world, the frequency of emerging climatic extremes 

disrupts environmental and societal processes caused by deleterious impacts of such disasters that 

tend to play havoc with human well-being, and engender severe consequences on ecosystems, 

communities, and the economy. Calamities induced by national extremes worldwide have caused 
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billions of dollars-worth of destruction, damage, and injury where about 20% of it is attributed to 

drought occurrences (Salvacion, 2021). 

Drought is a commonly recurring element related to climate, it is a natural peril affecting 

millions of households as it demands a difficult and sophisticated approach to scientifically address 

its inherent characteristics (Wu, et al., 2011).  For the past decades, interdisciplinary measures have 

been applied globally to mitigate drought-related jeopardies around the world in terms of famine due 

to reduced production-causing food insecurity, economic losses, natural resources, and environmental 

systems degradation. There has been a huge collection of research and sustainability efforts that have 

been established to address the need for a more serious undertaking in drought studies. For detailed 

information, the reader is referred to (Wilhite, 2012) and (Sheffield, 2012). The Intergovernmental 

Panel on Climate Change Framework on Vulnerability assessment has become one of the most used 

tools in assessing the impacts of natural hazards. In his working paper (Brooks, 2003), introduced a 

preliminary conceptual framework for vulnerability and adaptation that adapts to a variety of 

applications, systems, and hazards concerning climate change. Vulnerability is either perceived as a 

consignment of damage as an outcome of a specific climatic hazard or a superimposed aspect that 

thrives within the system to be stimulated when a climatic risk occurs. It is much broader in the real 

sense when it comes to the system's response to drought. It is an indicative measure of the 

susceptibility of an area, with respect to the main focus of evaluation may it be more in an economic, 

environmental, social, or physical aspect (Dabanli, 2018). 

 

Drought vulnerability assessment is contingent on the target sector to be evaluated and the 

geographical features of the area. Understanding the susceptibility to drought may require an in-depth 

consideration of several factors that can make the situation worse or on the other hand manageable. 

In other words, drought vulnerability is always related to the way a certain system under a climatic 

hazard responds in terms of its capacity to prepare for the possible occurrence of drought using 

diversification options in reducing the possible damage not only in an economic sense but may also 

be evident in the condition of their lives being affected by drought hazards. While drought can be 

correlated with the decrease in rainfall over an area, the real vulnerability might lay in how farmers 

incur an equivalent loss by not using a drought-resistant crop variety, or how much help a water-

impounding reservoir could make if it is available. There are complex approaches in mainstreaming 

drought mitigation efforts through vulnerability assessment that in a way, compliment each. It is now 

a globally-recognized agenda to weaken the social, environmental, and economical impact of drought 

by promulgating progressive routes in making societies more resilient to drought risk and 

vulnerability (Naumann et al., 2014).  

Agriculture is often regarded as the backbone of the Philippine economy as more than 30% 

of its land area is being cultivated. The country where the total production has been observed to rise 

in the past decade. Improved agro-methodologies and farming techniques as a by-product of 

productive research and development agenda have resulted in an almost 500% increase in rice 

production from 1961 to 2018 However, the Philippines is identified to be at the fore-front as to 

experiencing climatic extremes and disasters. Up to 327 million dollars-worth of agricultural damages 

have been estimated inherent to the El Nino incident from 2015 to 2019. The frequency and intensity 

of climate-related disasters always deter this positive course of development. (Perez, at al., 2022). In 

the Philippines, a handful of different vulnerability studies and methodologies have been performed 

to impose awareness and mainstream multi-calamity impacts of climate-related disasters. Following 

the IPCC model, to address the consequences of numerous disasters on society, the development of 

a thorough method for evaluating vulnerability was done in the Philippines as part of disaster risk 

reduction efforts conducted by (Robielos, et. al. 2020). Also, (Perez, et al., 2022) investigated the 

evolution of drought in the Philippines based on an El Niño event using strategically selected drought 

indices driven by satellite-sourced data. Watershed-specific climate change vulnerability studies were 

also conducted, as well as crop-oriented susceptibility assessment to climate-risk crop-based climate 

risk vulnerability assessment and climate change impact investigation under different climatic 

hazards but do not specifically focus on droughts, rather more concerned with exhibiting multi-

disaster vulnerability analysis.  

The Cagayan Valley Region where the MRB is situated is identified to be one of the highly 

vulnerable regions in the Philippines (Yusuf & Francisco, 2009) where the Magat River Basin (MRB) 
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has been considered to be one of the 142 critical watersheds in the Philippines by the Department of 

Environment and Natural Resources (DENR) and the majority of its area is under the protective 

custody of the government to secure the health of the watershed. The DENR has been mandated to 

steward the basin’s 4,143,000,000 m2 as a forest reserve and the National Irrigation Administration 

has been given the authority to develop some 15,000 ha. for irrigation and agricultural purposes 

(DENR, 2016). MRB harbors the infamous Magat Multi-Purpose Dam which plays a role in the 

economic development of the communities inside the watershed. To put into perspective, the Magat 

River Integrated Irrigation System (MARIIS) alone is servicing more than 86,000 ha. of rice fields 

and farm-based aquaculture ponds. The vast extent of land is being cultivated, ergo, providing 

opportunities for livelihood to farmers and fisherfolks and hence, making agriculture the primary 

endeavor, catapulting the basin as a prominent contributor in making the Province of Isabela the 2nd 

top rice-producing province in the Philippines. 

As climate change-induced anomalies keep on getting worse, thus putting the agriculture 

sector and dependent people at risk, the MRB is no stranger to such climatic hazards that affects all 

the sectors and industry that benefits from its resources. and one of the most devasting climate-related 

calamities is the occurrence of drought, a commonly occurring meteorological hazard in the 

Philippines (Warren, 2018). Climate change transmutes the occurrence, duration, intensity, and extent 

of drought. The slow-pacing onset of droughts can be observed and ranges from a considerable extent 

of time from a few months to even a couple of years. Drought impact is location specific and it 

challenges the stability of the basin to provide for its stakeholders. Drought is considered to be a real 

problem in irrigated agriculture, especially rice which at the same time threatens the agricultural 

capacity to support food security (Manalo et al., 2020). It is an emerging concern to reduce the 

corresponding social and economic cost of drought and assessing the corresponding economic 

damage should be made in evaluating the severity of drought impacts (Neri & Magaña, 2016). 

However, there is no distinct way to address drought vulnerability. Studies on drought vulnerability 

are quite diverse, and there is a lack of standardized methodology, consistent vulnerability 

measurements, and a shared conceptual understanding of susceptibility. Many of these highlighted 

the potential of merging the vulnerability and socio-economic hazard of a certain place in order to 

satisfactorily assess the corresponding drought risk. The socio-economic factor is concerned with the 

population of the area of interest, the cost of damage, the extent of lands affected, and the availability 

of adequate water supply (Jia et al., 2015). 

GIS-based methods are widely accepted and established to be a great tool not only in real-

time monitoring and detection capabilities but also in terms of data processing and calculation. GIS 

handles input data, its storage, management, processing, and analysis up to the production of output 

to be used in strategic frameworks and planning for risk and hazard mitigation and preparation. It fills 

in a huge part in the development of highly essential maps, necessary for promoting social security 

and emergency responses of the concerned agencies for the benefit of the stakeholders. (Karmakar, 

2010). This study was conducted to benchmark and assess the impacts of climate change on the 

vulnerability of the Magat River Basin to drought by considering agriculture as the major sector of 

focus by employing a quantitative analysis of data available from concerned agencies and reports, 

and by applying a site-specific an expert-judgment approach for agriculture derived from 

(Hagenlocher et al., 2019; Macawile, et. al., 2018) but have been tailor-made to tackle the genuine 

concern of the stakeholders and the real impact of drought branching from the decrease in the water 

supply to the way it affects every individual in many ways. As there are no current drought analyses 

specifically conducted for MRB, this study serves to be a pioneering approach in quantifying drought 

impacts concerning the basin’s vulnerability concerning agricultural socio-economic aspects. This 

study uses the principles of the Analytic Hierarchy Process (AHP) and Entropy method of multi-

criteria decision-making to reliably appraise the corresponding weight of indicators in both subjective 

and objective dimensions to appropriately assess the basin’s sensitivity, exposure, and adaptive 

capacity to drought. It was done using Geographic Information System (GIS) tools and techniques in 

calculating and formulating vulnerability maps.  For the benefit of catalyzing appropriate policy, 

governance, and decisions, and to enhance the monitoring efforts for suitable site-mitigation measures 

to be employed. This study will also include vulnerability projection which is explicitly affected by 

the future changes in the rainfall regime which is estimated utilizing the RCP-based projection in the 

Philippines that was generated using the Climate Information Risk Analysis Matrix (CLIRAM) tool 
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which was obtained from the Philippine Atmospheric, Geophysical and Astronomical Services 

Administration (PAGASA) that have been explicitly reporting the future changes in rainfall, 

temperature, sea level rise, and changes in tropical cyclone under different scenarios. (PAGASA, 

2018).  

 

 

Methods:  

 

A. Site of the Study 

The Magat River Basin (MRB) is located N 16o 09’ – 17o 01’; E 120o 52’ – 121o 48’ and is 

situated south of the Cagayan River Basin, which is the main watershed in Luzon Island, Philippines. 

It is under the Type II category in terms of climate.  MRB has an area of 4,306,820,000 m2 of which 

97% is situated in the province of Nueva Vizcaya, while parts of the province of Isabela and Ifugao 

encompass the remaining area. As a tributary of the great Cagayan River (Fig. 1.), the Magat River 

flows north-east from the Caraballo Mountain Ranges at about 135 km before converging with the 

Cagayan Main River at Naguillan Isabela. The major tributaries of the Magat River basin define its 7 

sub-watersheds (Fig. 2) namely Ibulao, Alimit, and Lamut sub-watersheds in Ifugao province; 

Matuno, and Sta. Fe sub-watersheds in Nueva Vizcaya; and two unnamed watersheds which cover 

the Isabela Area where the Magat Dam is located, and adjacent is another unnamed watershed on the 

part of Nueva Vizcaya (UNESCO-IHP, 1995).    

 
Fig. 1. Cagayan River Basin Sub-watersheds.  
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Fig. 2. Magat River Basin Sub-watersheds. 

 

B. Data Acquisition and Analysis 

 The success of all drought vulnerability studies is dependent on the availability and quality of 

data.  Data gathering might be the most difficult aspect or part of such studies but the adequacy of 

data determines the study output which will, later on, affect future policies that will be patterned 

based on the results generated from this research.  

The vulnerability in this study was generally assessed per subbasin level. The data were 

gathered using survey questionnaires and readily available information from concerned agencies and 

published information from credible sources.  

Rainfall 

 The rainfall data has been acquired thru collaboration with the Dam and Reservoir Division 

of the National Irrigation Administration. Further evaluation of the available data shows that there 

are 5 rainfall stations over the watershed that has an available precipitation record for the past 9 years 

which covers the 2014-2016 drought years (Official Gazette of the Republic of the Philippines, 2015) 

The other stations available were newly installed, while many stations considerably lack precipitation 

data for a long period making it unsuitable for the study.  

 The annual rainfall data were interpolated in terms of a geostatistical approach using GIS 

10.8.1 where the kriging method was used to approximate the amount of rainfall per subbasin and the 

basis for the annual continuous dry days. It was done to approximate the unavailable climatic data 

over an area. 

 In order to set a baseline year where the average number of dry days and the duration of 

drought will be patterned, a 9-year Standardized Precipitation Index was used. SPI is one of the most 

common indices that is being employed in detecting meteorological drought from historical 

precipitation anomalies in a specific location. It can be utilized using as low as 1 month to a couple 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

of years of precipitation data. As with other climatic indicators, the time series of data used to 

calculate SPI does not need to be of a specific length. SPI fits historical precipitation data to a 

probability distribution to be transformed into a normal distribution. While other researchers identify 

an SPI value of less than -1 to indicate drought, no standard is imposed. Some can venture by choosing 

a threshold value less than zero to indicate relative drought occurrence (Svoboda & Fuchs,2016) 

(WMO, 2012). 

 

SPI= 
𝑋𝑖𝑗−x𝑖̄

𝛔𝑖
                                                                                                       (1) 

 

where:  Xij  is the rainfall for the ith and jth station observations, x̄i is the mean rainfall for the ith 

station and σ is the standard deviation for the ith station.  

 
Fig. 3. 9-Year Standardized Precipitation Index of Magat River Basin 

 

Land Cover and Stream Data 

In order to assess the Land Use and Forest Cover Indicators, the latest up-to-date, 2015 Land 

Cover Dataset obtained from the National Mapping and Resources Information Authority (NAMRIA) 

where LandSat8 digital and visual image interpretation was used for land cover mapping, acquired 

from Earth Observing System's LandViewer (EOS). The stream data has been identified thru ocular 

field inspection and dialogue with the locals. The spatial data has been subjected to geoprocessing 

using GIS. 

Planting Calendar and Service area of Irrigation System  

 In order to determine the plant growth stage at the onset of a drought, the general cropping 

calendar with respect to the type of climate, type 3 or in the case of MRB, and the quantity of 

agricultural land that is irrigation dependent. Data were gathered from the Department of Agriculture, 

the National Irrigation Administration where analysis was performed to consolidate and arrive at the 

required set of data requirements. 

 

Field Data 

 While the climatic and farming aspect datasets are obtained thru coordination with concerned 

agencies and are available for public access online which includes several auxiliary data that support 

the main information. The majority of datasets that will be needed to qualify the indicators of 

corresponding components of vulnerability i.e. sensitivity, exposure, and adaptive capacity, were 

gathered thru field surveys where the farming households, as the primary stakeholders of the basin, 
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were the clientele of focus. 

To gather the necessary information, the researchers conducted a survey in chosen localities 

per Subbasin from the 7th to the 8th of February, 2022. The survey was carried out to collect key 

drought risk information, such as economic losses caused by protracted drought, as well as existing 

interventions and adaptive measures that assist farmers in fulfilling crop and water demands, such as 

irrigation infrastructure and crop types. Furthermore, the survey represents the socioeconomic metrics 

employed in this study's analysis. Such information was employed to quantify the adaptation 

measures that are being undertaken, as well as to entice proper accounting of the basin's susceptibility 

and exposure to drought from an agro-economic standpoint. 

 

C. Vulnerability Assessment Work Flow  

 The purpose of this study is to generate a solid and meaningful output that will aid in the 

creation of effective policies and actions to manage drought risk and avert human, socioeconomic, 

and environmental harm. To assist individuals and technical authorities in performing related 

investigations in mitigating possible dangers by offering benchmarking methodology and findings to 

supplement their efforts. 

Figure 3. shows the workflow of the study in generating the vulnerability map of the Magat 

River Basin using Geographic Information System (GIS) tools and procedures. 

 

 
 

Fig. 4. Drought Vulnerability Flow Chart  

 

C.1. Calculation of the Weight of Indicators  

 The weight of each component of vulnerability was subjected to both subjective and objective 

Multi-Criteria Decision Analysis (MCDA) in order to carefully account for the respective 

contributory factor of indicators in the total vulnerability of MRB. For hazard and disaster-related 

studies (Li, et.al., 2022; Sahana, et. al., 2021; Liu, et. al., 2019; Zeng and Huang, 2018) involving 

multi-criteria analysis, two of the most frequently employed methods for weight estimation are the 

analytic hierarchy process (AHP) (Saaty, 1980), to and Entropy Weighting Method (Zhu, et. al., 

2020).  

 Palchaudhuri and Biswas (2016) coupled AHP and GIS in assessing the drought risk in India. 
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Similarly, AHP was employed in this study to establish pairwise comparison matrices among the 

indicators of drought dimensions to synthesize the vehemence of indicators against each other based 

on Saaty’s scale of relative importance (Table 1). Separate analyses were conducted for each of the 

dimensions of vulnerability (Sensitivity, Exposure, and Adaptive Capacity) to determine the 

respective weight of indicators based on pairwise comparisons. Here, the idea is to determine the 

level of sensitivity, exposure, and adaptive capacity of the MRB subbasins using the indicators of the 

dimensions of vulnerability. In generating the sensitivity, exposure, and adaptive capacity maps of 

MRB, a reliable weighting coefficient for each indicator is needed to how an indicator is more 

important or of lesser importance than the other indicators. 

 

Table 1. Saaty’s Scale of Relative Importance (Saaty, 2008). 

Intensity of 

Importance 

Definition Explanation 

1 Equal Importance Two activities contribute equally to the 

objective 

2 Weak or Slight  

3 Moderate Importance Experience and judgment slightly favor one 

activity over another 

4 Moderate Plus  

5 Strong Importance Experience and judgment strongly favor 

one activity over another 

6 Strong Plus  

7 Very Strong or Demonstrated 

Importance 

An activity is favored very strongly over 

another; its dominance demonstrated in 

practice 

8 Very, very strong  

9 Extreme Importance The evidence favoring one activity over 

another 

is of the highest possible order of affirmation 

Reciprocals of 

above 

If activity i has one of the 

above non-zero numbers 

assigned to it when 

compared with activity j, 

then j has the reciprocal 

value when compared 

with i 

A reasonable assumption 

1.1-1.9 If the activities are very close May be difficult to assign the best value but 

when compared with other contrasting 

activities the size of the small numbers 

would not be too noticeable, yet they can still 

indicate the relative importance of the 

activities. 

 

 

 

 

 

 

 

 

 

 

Table 2. Resulting Weight of Indicators Based on Pairwise Comparisons. a.) Sensitivity b.) Exposure 

c.) Adaptive Capacity 
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

a.) 

Category  Weight Rank 

1 Number of dry days 24.60% 2 

2 Percent Forest Cover 10.00% 5 

3 Type of River 2.90% 7 

4 Continuous Dry Days 30.90% 1 

5 Land Use/ Land Cover 13.60% 3 

6 Plant Growth Stage 12.70% 4 

7 Land Dependent on Irrigation 5.30% 6 

 

b.)  

Category  Weight Rank 

1 Rainfall 16.50% 3 

2 Average max temperature 7.00% 6 

3 Income Loss 28.20% 1 

4 Extent of production area 2 droughts 3.70% 7 

5 Yield loss 25.70% 2 

6 Agriculture Dependent Families 8.30% 5 

7 Drought Duration 10.60% 4 

 

c.)  

Category  Weight Rank 

1 Availability of irrigation program 30.80% 1 

2 Available Maps of drought-prone area 3.00% 9 

3 Total farmers doing crop diversification. 9.10% 4 

4 Access to crop insurance, loans, or subsidies 7.70% 6 

5 Access to drought forecasting information 4.70% 7 

6 Cloud seeding program (Coverage) 2.40% 10 

7 Farmers with diversified livelihood 17.30% 2 

8 Access planting calendar and other info. 4.00% 8 

9 Average expenditure for agriculture programs 13.30% 3 

10 Farmers using drought-resistant varieties 7.70% 5 

 

AHP was employed to evaluate the significance of the indicators in influencing the respective 

dimensions of drought vulnerability. The weight coefficients will be determined using a pairwise 

comparison matrix which will be normalized. The weight vector (w) is calculated using the formula 

(Ahamed, et.al., 2000; Liang and Yang, 2022) 

 

A = [aij], i, j = 1,2,3……..,n.                                                                            (2) 

 

where A is the pairwise comparison matrix and aij is the ratio wi/wj which shows the degree 

to which the wi indicator is greater than wj indicator. 

 

The weighting coefficient vector (w) is determined by the formula; 

 

Aw = λmax w               (3) 

 

λmax is the maximum eigenvalue of, matrix A. 

 

In determining the reliability of the pairwise comparison matrix, the Consistency Ratio (CR) 

is calculated using the formula; 

 

CR = CI/RI          (4) 
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where CI is the consistency Index and is given by the formula,  
(λmax − n)

( n−1)
 ; n = number of the 

compared indicators. And RI is the Random Index that is based on the structure of matrix A (Saaty, 

1980) 

The computed CR of the respective drought vulnerability dimensions is less than the 

acceptable CR value of less than 0.1 (10%). Resultingly, the Sensitivity Dimension has a CR 

percentage value of 6.3%. And 7.3% and 8.1% for Exposure and Adaptive Capacity, respectively. 

This implies that the weights are reliable and can be considered in the analysis. The generated weight 

assigned to the different indicators was then incorporated into the raster calculation formula in GIS 

to quantify the final Sensitivity, Exposure, and Adaptive Capacity rating of MRB to drought. For a 

more comprehensive understanding of the AHP process, the reader is referred to (Saaty, 1980; 

Vargas, 1990; Saaty, 2008) 

 

In obtaining the final weights for the dimensions of vulnerability, this study employs the 

Entropy method, an objective, comprehensive, and widely used method of weighting the components 

of vulnerability by circumventing human influence. This measures the degree of variance in order to 

assess value. The greater the deviation of the measured value, the higher the level of differentiation 

of the indicator and the more information that may be extracted. (Taheriyoun, et al., 2010)  

The method starts by standardizing the measured values of each vulnerability dimension with 

respect to each subbasin obtained using the AHP method. Here, the categories of vulnerability are 

Sensitivity (S), Exposure (E), and Adaptive Capacity (AC). 

 

    𝑅𝑖𝑗=
𝑋𝑖𝑗  

∑ 𝑋𝑖𝑗
𝑚
𝑖=1

          (6) 

 

where: 𝑿𝒊𝒋 is the measured value of the ith indicator in the jth sample and  𝑹𝒊𝒋 denotes the 

standardized value of the ith value in the jth sample. 

 

The entropy index formula is given by: 

 

               𝐸𝑖 = −𝑘 ∑ 𝑓𝑖,𝑗 log 𝑓𝑖,𝑗
𝑛
𝑖=1                                                                                                    (7) 

 

Where k is 
1

ln 𝑛
 , and n is the number of alternatives. 𝑓𝑖, 𝑗= 

𝑅𝑖𝑗

∑ 𝑅𝑖𝑗
𝑚
𝑖=1

 

 

The weight calculation (Wi) is represented by:  \ 

 

           Wi =  
1−𝐸𝑖

∑ (1−𝑚
𝑖=1 𝐸𝑖)

                                                                                                       (8) 

 

where: Wi  is the weight of the evaluated category and (𝟏 − 𝑾𝒊) is the degree of diversity.  

 

Here, 0< 𝑾𝒊 < 𝟏 . And the  ∑ 𝑾𝒊
𝒎
𝒊=𝟏  = 1.  

 

C.2. Calculation of Vulnerability 

Vulnerability is determined by the kind, amount, and pace of climatic change and fluctuation 

to which a system is subjected or exposed, as well as the sensitivity and adaptive capacity of the 

system. Exposure and Sensitivity are identified to be the implicit impact or corresponding influence 

of drought and adaptive capacity serves as an opposing dimension that covers the coping mechanism 

and defense mechanism of the system. 

And the overall value of Sensitivity, Exposure, and Adaptive Capacity components was also 

calculated using Raster Calculator in GIS. Since the respective drought indicators have corresponding 

ranks and scales, the respective value of the drought vulnerability component is equal to the mean of 

the rating/rank of its corresponding indicators.  
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Sensitivity;  Exposure; AdaptiveCapacity =
∑ 𝐼𝑖

𝑛
𝑖=1

𝑛
                                              (9) 

 

 where:  Ii  is the indicator with respect to the drought vulnerability component and n is the 

number of indicators under each drought vulnerability component.  

  For this study, the vulnerability of the MRB was computed using the Raster Calculator Spatial 

Analysis tool in GIS by employing the formula that was used by (Shim, et al., 2021; Liu. et. al., 2013) 

 

V = S (WS) + E (WE) – AC (WAC)                                                 (10) 

 

 where V  is the vulnerability, S  is the sensitivity, E  is the exposure, AC  is the adaptive 

capacity, and WS; WE; WAC is the computed weight of the dimensions of vulnerability. 

 

D.  Assessment of Drought Indicators 

From local to global dimensions, indicator-based techniques have been pushed as valuable 

tools for assessing, comparing, and monitoring the complexity of drought risk (Hagenlocher, et al., 

2019).  

The basin’s vulnerability has been carefully attributed to three categories: Sensitivity, 

Exposure, and Adaptive Capacity (Cui, et al., 2010) which is adapted to the concept of vulnerability 

of the Intergovernmental Panel on Climate Change. Each category has taken into account the best 

indicators that will succinctly represent each category. The agriculture sector has been the main sector 

of focus since a considerable number of studies in developing frameworks, methods, and the selection 

of indicators have been conducted considering agricultural aspects (Shim, et al., 2021) There is no 

standard for identifying hazard vulnerability indicators, it is always affected by the specific 

characteristics that govern the local system (Zarafshani. Et al., 2016). Hence, the indicators were 

formulated based on an expert-judgment approach from the global expert survey results report by 

(Meza, et al., 2019) of the European Commission which includes relevant indicators for agricultural 

systems, which have been modified to select the indicators that are uniquely applicable to Magat 

River Basin.  

 

D.1. Sensitivity 

Sensitivity is consistently defined as the factor by which a certain system is positively or 

negatively affected by drought. Or in simple terms, sensitivity pertains to the environment since it 

includes social, economic, and ecological conditions driven by drought hazards. A higher sensitivity 

value of a system is equivalent to a higher exposure it will be subjected leading to a higher 

vulnerability. 

For MRB, the sensitivity indicators were analyzed according to class and given a rating or 

rank, where the highest sensitivity rating is five (5)  and one (1) as the lowest. Table 3 shows the 

different sensitivity indicators used in this study. 

 

Table 3. Drought sensitivity Indicators. 

Sensitivity  

Indicator Class Rating Scale 

a.    Number of 

continuous dry days 

(Annual Average) 

     

>72 days 5 Very High 

48-72 days 4 High 

30-48 days 3 Moderate 

6-30 days 2 Low 

<6 day 1 Very Low 

b.   Percent forest cover 

(%) 

     

≤ 20 5 Very High 

21-40 4 High 

41-60 3 Moderate 

61-80 2 Low 
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>80 1 Very Low 

b.    Landuse 

     

Upland agriculture 

and settlements 
5 Very High 

Pasture and grazing 

lands  
4 High 

Agroforestry 3 Moderate 

Plantation forest 2 Low 

Natural forest 1 Very Low 

e.    Type of rivers or 

streams 

     

None 5 Very High 

Ephemeral 4 High 

Intermittent 3 Moderate 

Perennial (1 only) 2 Low 

Perennial (2 or more) 1 Very Low 

f.    Plant growth stage 

at the time of drought   

     

Seedling stage 5 Very High 

Maturing stage 4 High 

Flowering stage 3 Moderate 

Fruiting stage 2 
Low 

 

Harvesting stage 1 
Very Low 

 

 

g.    Dependence on 

irrigation (% of 

agricultural lands 

dependent on 

irrigation) 

     

>80 5 Very High 

61-80 4 High 

41-60 3 Moderate 

21-40 2 Low 

<20 1 Very Low 

 

h.     Duration of 

drought, No. of 

Months 

     

>2 5 Very High 

1-2 3 Moderate 

<1 2 Low 

 

D.2. Exposure 

 The inclusion of Exposure to previous and recent drought studies is always being done. The 

intensity, duration, or frequency of stress on a system is measured by exposure. From the term alone, 

exposure pertains to the state to which a certain system is exposed or remains in a condition to be 

affected by consequential drought.  

 This study utilizes drought exposure indicators (Table 4) in order to evaluate the exposure 

category of vulnerability in MRB. 

 

Table 4. Drought Exposure Indicators 

Exposure 

Indicator Class Rating Scale 

a.    Rainfall, mm 

     

<1,500 5 Very High 

1,501 – 2,000 4 High 

2,001 – 2,500 3 Moderate 

2,501 – 3,000 2 Low 

>3,000 1 Very Low 

    

b. Temperature 
>35 5 Very high 

25-35 2 Low (Most Suitable) 
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<25 3 
Moderate 

(Secondarily Suitable) 

c.    Extent of 

production areas 

affected, (%) 

   

>80% 5 Very High 

61-80 4 High 

41-60 3 Moderate 

21-40 2 Low 

<20 1 
 Y7Very Lowu4 

 

d.    Yield losses due 

to drought (%) 

   

>40 5 Very High 

31-40 4 High 

21-30 3 Moderate 

11-20 2 Low 

<10 1 Very Low 

e.    Income loss from 

production, (%) 

   

>40 5 Very High 

31-40 4 High 

21-30 3 Moderate 

11-20 2 Low 

<10 1 Very Low 

f.    Number of 

agriculture-dependent 

families affected, (%) 

   

>40 5 Very High 

31-40 4 High 

21-30 3 Moderate 

11-20 2 Low 

<10 1 Very Low 

g. Duration of 

drought, No. of 

Months 

>2 5 Very High 

1-2 3 Moderate 

<1 2 Low 

 

 

D.3. Adaptive Capacity 

 Vulnerability is composed of positive and negative dimensions. Positive is the Sensitivity and 

Exposure factor since they are the positive effects of drought on the vulnerability of the system, and 

negative is the adaptive capacity since it is the counter measure in mitigating possible drought 

consequences. Or in other words, adaptive capacity pertains to the coping mechanism and response 

of the system to lower or lessen the potential impacts of drought. It includes the construction or 

irrigation facilities, the introduction of crop-resistant varieties, cloud seeding, etc. whose ultimate aim 

is to alleviate drought implications. 

  Modern vulnerability studies consider the concept of adaptive capacity as the most important 

factor that separates it from earlier studies concerning climate-related vulnerability. It is said to be 

mainly defined by social, economic, and biophysical processes. The Adaptive Capacity Indicators in 

this study are shown in Table 5 

 

 

 

Table 5. Adaptive Capacity Indicators. 

Adaptive Capacity    

Indicator Class Rating 

Scale (Against 

Potential Drought 

Impact) 
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a.    Availability of small-scale 

irrigation program 

Available 1 Very High 

Partially Available 3 Moderate 

Not Available 5 Very Low 

    

    

b.    Maps of drought Prone 

Areas 

Available 1 Very High 

Partially Available 3 Moderate 

Not Available 5 Very Low 

    

c.    Percentage of  

the total number of farmers doing 

   crop diversification practices 

>40 1 Very High 

31-40 2 High 

21-30 3 Moderate 

11-20 4 Low 

<10 5 Very Low 

d.    Access to crop     

insurance, loans, or subsidies 

>40 1 Very High 

   

31-40 2 High 

21-30 3 Moderate 

11-20 4 Low 

<10 5 Very Low 

    

e.     Access to drought 

forecasting information and early 

warning system, AWS or 

AGROMET station 

Accessible 1 Very High 

Partially 

Accessible 
3 Moderate 

Not Accessible 5 Very Low 

    

f. Cloud seeding program 

(Coverage) 

Covered 1 Very High 

Partially Covered 3 Moderate 

Not Covered 5 Very Low 

    

g.  Percentage of the total 

farmers with diversified 

livelihood practices 

>40 1 Very High 

31-40 2 High 

21-30 3 Moderate 

11-20 4 Low 

<10 5 Very Low 

    

h.      Access planting calendar 

bulletins and other relevant 

information 

>40 1 Very High 

31-40 2 High 

21-30 3 Moderate 

11-20 4 Low 

<10 5 Very Low 

    

i.   Average expenditure (% of the 

total budget) for agricultural 

programs for drought-prone areas for 

the past 5 years 

>40 1 Very High 

31-40 2 High 

21-30 3 Moderate 

11-20 4 Low 

<10a  5 Very Low 

    

j.     Use of drought-resistant crop 

varieties (% of total farmers) 

>40 1 Very High 

31-40 2 High 

21-30 3 Moderate 

11-20 4 Low 

<10 5 Very Low 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

Projected Changes in Exposure 

 

In order to make projections on the future climatic trend in the basin, the RCP-based 

projections that were requested from DOST-PAGASA were used. The projections available in the 

Philippines that were generated using the Climate Information Risk Analysis Matrix (CLIRAM) tool 

that has been explicitly included in the report are changes in rainfall, temperature, sea level rise, and 

changes in tropical cyclone (DOST-PAGASA, 2018). It was based on the IPCC AR5 where climate 

scientists, modelers, and experts collaboratively catalyzed resolution-based datasets that have been 

downscaled on a 0.5x0.5 grid resolution (including land use data, air pollutants, etc.). The IPCC 

Expert Panel has chosen four scenarios based on radiative forcing level as influenced by greenhouse 

gasses emissions and other contributory agents. For this study, we considered the RCP 4.5, a scenario 

that reaches a peak radiative forcing of 4.5 W/m2 (2040) which declines and stabilizes in the year 

2100 since it is the scenario that is most likely to happen considering the trajectory of climatic and 

emission trend that is observed in the Philippines and the adaptive measures that are being 

promulgated. Also, the RCP 8.5 where the radiative forcing exceeds 8.5 W/m2 by 2100 and will 

progressively increase with the same amount of time (van Vuuren, et al., 2011).  

 The location of rainfall gauging stations over the Magat Watershed are strategically located 

in different provinces. The downscaled (provincial-level) seasonal projections as provided by the 

CLIRAM tool was used to estimate the projected rainfall in the year 2036-2065 Mid-21st century and 

2070 to 2099 Late-21st Century. 

 

Results 

 

From the survey conducted, the response of the farmers ranging from ages 33-75 years old 

has been gathered to further establish the sensitivity, exposure, and adaptive capacity of the study 

area. The farmer respondents, of which 26% are female, all registered an additional source of income 

mainly backyard livestock farming (e.g. native chicken, pigs, duck, small ruminants, cattle). 1/3 of 

the farmers said that they have a secondary income that supports them aside from farming.  

The farmer respondents that we have considered are using 3 main commodities e.g. rice, corn, 

tobacco, and a considerable number of them venture into high-value vegetable crops. For corn, the 

average yield loss is tallied at 20% to as much as 60% in highly exposed areas. For rice, an average 

of 35% yield loss was also estimated based on the response of the farmers and the comparison of crop 

yield during normal cropping season to drought season. Tobacco farmers, however, incur some 

significant 30% to 60% yield and income loss when facing severe droughts even if they use drought-

resistant varieties. For vegetable/High-Value Crop farmers, it was estimated that 20% of their normal 

income is being reduced during drought season, or in some isolated cases, damage crop does not do 

well under stressed conditions that they abort farming for that particular season, rendering them a 

100% loss of income.  

From the results of the survey conducted, it has also been found that only 21% of the farmer-

respondents have confirmed that they have crop insurance and only 42% are using drought-resistant 

varieties. All of the farmers positively affirmed that they have access to forecasting and AGROMET 

stations and more than 95% of them undergo crop diversification practices.  

Most of the farmers (95%) have access to irrigation facilities where a considerable number of 

such irrigation sources are privately owned e.g. deep well for tobacco, vegetable, and some rice 

farmers.  

 

 

 

Sensitivity 

 

The raster data from NAMRIA has been subjected to GIS processing in order to acquire the 

needed land cover information in assessing the land use of the MRB. The rating of every respective 

subbasin is not far from the basin’s sensitivity rating of 3.6 which takes place from Moderate to High 

on the Sensitivity Scale. This is due to the fact that the primary endeavor in the basin is agriculture 
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with the corresponding settlements of communities (Very High) and which also engage in livestock 

and pastures (High) that raise the sensitivity in terms of land use into such scale but however 

countered by the vast extent of forest areas. 

 In terms of the Percentage of Forest Cover, the MRB’s rating is 2.85 or between the Low to 

Moderate Sensitivity Scale. Subbasin 2 has a High sensitivity since it only has 21-40% of forest cover, 

it is true since part of the land area is developed for agricultural purposes as part of the 86,000 ha of 

the irrigated service area of the Magat River Integrated Irrigation System (MARIIS). Ibulao and 

Matuno subbasins, however, have a very low sensitivity to drought which is attributed to more than 

80% of its area being covered by forest and in the mountainous zone of Ifugao. Alimit is under some 

41-60% of forest lands (Moderate), and Lamut Subbasin has very low drought sensitivity having a 

61-80% of forest overlain its terrain. 

 The MRB has a very low sensitivity to drought in terms of the type of streams available. The 

presence of a perennial type of stream has been identified by field visits and ocular inspection 

supported by the responses of the locals verifying a year-long stream flow which has a corresponding 

rating of sensitivity rating of 1 (very low). 

 The plant growth stage during the occurrence of drought was evaluated using 2014 as the year 

of basis. For ease of assessment, the crop growth stages of major commodities per province have been 

considered. The general cropping calendar of the provinces with respect to its crop commodities i.e. 

Rice, Yellow Corn, and High-Value Crops like Cabbage and Potato. Alimit, Ibulao, and Lamut 

Subbasins have been identified to be subjected to a High Sensitivity rating based on our data gathering 

and assessment, since the majority of the crops have been affected by drought during its maturity 

stage, while the Subbasin 2, Matuno, Sta. Fe, and Subbasin 1 were rated at 5 (Very High). 

The percentage of agricultural lands dependent on agriculture has been evaluated using the 

readily available online data of irrigation systems and facilities and their service area access thru the 

respective websites of NIA Irrigation Management Offices. The assessment indicates that 80% of the 

agricultural areas are dependent on irrigation. This is true since rice fields are prevalent over the basin 

where irrigation supply replies on conventional surface irrigation and pumping wells. Subbasin 2 

alone has over 860,000,000 m2 of rice fields supplied by water diverted from the Magat Dam, 

excluding those crop varieties that are being supplied from other sources. The Ifugao and Nueva 

Vizcaya areas also have newly built and improved irrigation facilities making about 80% of the 

agricultural areas to be dependent on irrigation.  

 The corresponding rating of each subbasin with respect to the given indicator was used in 

generating a raster map of all drought sensitivity indicators. The sensitivity to the drought of MRB 

Basin has been computed using the Raster Calculator, a spatial analyst tool, in GIS 

The overall drought sensitivity rating of Magat River Basin is calculated to be in a range of 

2.597 to 4.757 (Moderately low to Very High) as shown in Fig.5. Subbasin 2 is the most sensitive to 

drought having a sensitivity rating of 4.68, followed by Sta. Fe with a 4.26 rating. Ibulao Subbasin is 

the least susceptible to drought having a rating of 2.81 (Low-Moderately Vulnerable). While the other 

Subbasins are above the moderate and concurrently approaching the High Drought Vulnerability 

Scale of 4.  
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Fig. 5. Drought Sensitivity Map of Magat River Basin. 

 

Exposure 

 

In calculating the current sensitivity of the Basin, the 9-year Standardized Precipitation Index 

(Fig.4) implies that 2014 was relatively dry in comparison to the other years. The mean annual rainfall 

harnessed from the Rainfall Stations over the Magat River Basin has a rating of 3.71 or less than 2000 

mm whereas Santa Fe and Subbasin 2 have an annual rainfall of less than 1500 mm which in Drought 

Sensitivity Scale is Moderate to High. The continuous dry days for the entire MRB having the 2014 

drought as a baseline has lasted for 42-72 days which is classified to be in a High where Subbasin 2 

and Santa Fe Subbasin recorded more than 72 days without rainfall (Very High); Ibulao and Alimit 

Subbasin sustained 30-48 days of no rainfall (Moderate), and Lamut and Subbasin 1 falls on a High 

Sensitivity Scale having been experience a 42-72 days of no rainfall. 

 

Table 6.  Monthly Cumulative Rainfall Data of MRB. 

 

 

  

2014 
BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm)  

Jan 0.0 0.0 0.0 0.0 91.0  

Feb 67.8 1.2 176.6 2.0 0.0  

Mar 74.8 0.8 111.4 0.6 29.0  

Apr 283.2 1.8 236.2 109.0 33.0  

May 363.0 4.2 170.2 124.4 275.0  

Jun 197.4 0.6 206.4 297.6 35.0  

Jul 311.4 129.2 240.6 268.0 137.0  

Aug 338.8 5.4 209.8 370.4 109.0  

Sep 367.4 0.0 454.0 509.2 109.0  

Oct 383.8 356.8 403.6 161.8 109.0  

Nov 227.0 53.0 244.0 68.8 60.0  

Dec 0.0 0.0 0.0 0.0 91.0  
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The survey implies that the basin’s exposure to drought has a mean value of 3.4 for the entire MRB 

or up to 40% of the total area. Results of analyses also imply that about 70% of the agricultural 

production areas have been affected by drought occurrences where Alimit, Ibulao, Ibulao, Lamut, and 

Matuno Subbasins have 41-60% (moderately exposed to drought) of the respective production areas 

affected by drought while Subbasin 1 and 2, and Sta. Fe Subbasins have a high drought exposure of 

61-80% in terms of production areas affected. 

 Yield and income losses for the whole MRB were estimated at about 30%. The Santa Fe and 

Subbasin 1, from consolidating farmer response, lose 31-40% of yield and income compared to 

production years without drought. Subbasin 2 however, having the Magat Dam as their main source 

of irrigation support, accounted for 11-20% losses (very low). The remaining subbasins have an 

estimated 21-30% loss which is considered to be moderately exposed to drought.  

 The number of agriculture-dependent families or families having agriculture as their main 

source of livelihood and income is quite high. Lamut, Subbasin 2, and Subbasin 1, from the results 

of the survey, house 40% of families that are highly depended on agriculture. And respected 15-30% 

of agriculture-dependent families for each of the other subbasins which are in the scale of low to 

moderated exposure to drought in terms of a number of agriculture-dependent families indicators.  

 The corresponding rating of each subbasin with respect to the given indicator was used in 

generating a raster map of all drought exposure indicators. The exposure to the drought of the Magat 

River Basin has been computed using the Raster Calculator, a spatial analyst tool, in GIS.  

 In terms of the duration of drought, the Magat River Basin as a whole experienced drought 

for 1-2 months making it moderately sensitive to drought in terms of drought duration indicator. 

 Subbasin 1, Subbasin 2, Matuno, and Santa Fe have an average drought exposure value of 

3.75, 3.38, 3.46, and 3.67, respectively which is more than the moderate scale while the other 

subbasins are found to be in between low and moderate drought exposure merits. The overall drought 

exposure value of MRB is ranging from 2.76 – 3.75 (Fig. 6) which identifies the basin to be 

moderately exposed to drought events. 

 
Fig. 6. Drought Exposure Map of Magat River Basin. 

 

Adaptive Capacity 

   

  From the conducted survey and data gathering, it was determined that each subbasin has an 

available irrigation system or water-impounding reservoir, making the MRB relatively low in terms 

of potential impact. Some published reports from the respective NIA IMOs also show the 
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rehabilitation and newly installed irrigation projects which can be found inside the zone of each 

subbasin. 

Crop diversification practices are also in a way being observed but not quite radical in 

comparison to the conventional practice of cropping patterns. 21-30% of the farmers from Alimit, 

Ibulao, and Lamut Subbasins are doing some diversification and planting new crop varieties to 

explore opportunities of having a bigger profit. While there are 15% of farmers in Subbasin 1, 

Matuno, and Sta. Fe subbasins that are doing crop diversification practices. Subbasin 2 only has less 

than 10% of farmers doing crop diversification practice since the cropping patten of planting a legume 

crop after 2 cropping of rice is the conventional practice that is being observed since most of the 

agricultural production areas are rice fields. And in terms of maps of drought-prone areas, the 

available maps are not area specific but presented to be in general as part of a wider regional basis so 

a “partially available” classification has been expertly assigned to it. 

 Moreover, from the survey, in terms of farmers' access to crop insurance and subsidies, there 

is a relatively low risk of the potential impact of drought since about 40% of the farmers confirmed 

that they are eligible for subsidies and are registered for crop insurance programs where subbasin 2 

have more than 45% of farmers having their rice fields insured and have access to previous and future 

subsidies. And the other subbasins have about 25-40% of farmers with access to crop loans, insurance, 

and subsidies. It is also manifested in the results of the data gathering from available sources (47-48) 

and survey that more than 40% of the total budget of agriculture are being utilized for drought 

response programs in order to alleviate the suffering of the farmers in terms of severely dry climate.  

 The majority of the farmers also claim that they have access to weather information from 

AGROMET stations being broadcast and circulated locally. Also, in the case of those that are being 

supplied by the National Irrigation System are observing a proper cropping calendar and since the 

MRB has a type 2 climate the farmers follow a traditional cropping calendar for high-value crops. It 

also included the service of the concerned agencies by providing cloud seeding programs and from 

the study, the MRB was partially covered with cloud seeding programs. Moreover, the majority of 

the farmers said that they are planting drought-resistant crop varieties especially, rice. From the 

response of the farmers from Alimit, Ibulao, Subbasin 2, Matuno, and Subbasin 1, analysis shows 

that more than 40% of the total farmers for each respective subbasin are using crop-resistant varieties. 

About 35% of the farmers from the other subbasins say that they are using drought-resistant varieties, 

classifying it to be in a low potential impact scale due to high adaptive capacity value. 

 The analysis of survey data suggests that in Alimit, Lamut, Subbasin 2, Matuno, and Subbasin 

1, the number of farmers with diverse livelihoods has a range of 50-70%, which implies that the latter 

indicator has a scale of 5 (Very High) against potential impacts. Setting the overall adaptive capacity 

to alleviate the potential impact of drought on MRB to 4.6   

 The corresponding rating of each subbasin with respect to the given indicator was used in 

generating a raster map of all adaptive capacity indicators. The potential impact of drought on the 

MRB that is traying to be alleviated by the Adaptive Capacity measures on the basin has been 

computed using the Raster Calculator, a spatial analyst tool, in GIS.  

 The Adaptive Capacity of the MRB is ranging from 3.17 to 3.99, implying that the indicators 

are said to be on a moderate to high scale in terms of their effect in fortifying the Basin’s response to 

drought hazards (Fig. 7).  
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Fig. 7. Adaptive Capacity to Drought Map of Magat River Basin. 

 

 

Overall Vulnerability 

 

 The MRB’s drought vulnerability was calculated using the weighted categories of Sensitivity, 

Exposure, and Adaptive Capacity and was classified to be in the range of low to moderate (1.94 to 

2.98) having the upstream section (Santa Fe, Sub-watershed 1) to be the moderately susceptible 

(Fig.8.)  

 
Fig.8. Overall Drought Vulnerability Map of Magat River Basin. 

 

 The contemporary condition of MRB in terms of its level of Sensitivity, Exposure, and 
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Adaptive Capacity to drought, and its overall drought vulnerability serves as the baseline for future 

projection.  

 

Projected Changes in MRB’s Drought Exposure and Vulnerability 

 

 Using the CLIRAM Tool of PAGASA, the observed climate trends in the Philippines is only 

contingent on rainfall, temperature, sea level rise, and tropical cyclone. For this study, rainfall and 

temperature were defined as drought exposure indicators. Given the projected percentage change of 

rainfall and temperature parameters, the projected Drought Exposure of Magat River Basin under 

RCP 4.5 and RCP 8.5 Scenarios for both Mid (2036 – 2065) and Late (2070-2099) 21st Century. The 

current drought exposure level of MRB is at 2.76 – 3.75 and is projected to have a minute increase to 

a value of 2.77 for RCP 4.5 Mid-Century (Normal), RCP 4.5 Late Century (Lower-bound and 

Normal), RCP 8.5 Mid-Century (Lower-bound), and RCP 8.5 Late Century (Lower-bound and 

Normal). But is projected to have a minimum value decrease at 2.16 for RCP 4.5 Mid-Century 

(Lower-bound) and a 2.61 projected minimum exposure rating of 2.61 for RCP 4.5 Mid-Century 

(Upper-bound), RCP 4.5 Late Century (Upper-bound), RCP 8.5 Mid-Century (Normal and Upper-

bound), and RCP 8.5 Late Century (Upper-bound). However, the maximum exposure rating of MRB 

in all future scenarios is projected to subside to as low as 2.4 (a decrease of 36%) for RCP 4.5 Mid-

Century Scenario (Lower-bound) and at considerable decrease at 3.27, 3.44, and 3.45 exposure rating 

under all other scenarios (Table 7). 

 

Table 7. Projected Exposure Values of Magat River Basin 

Contemporary Exposure 

of Magat River Basin 
  

Drought Exposure 

Under RCP 4.5 

Scenario 

Drought Exposure 

Under RCP 8.5 

Scenario 

2.76 - 3.75 

Mid Century     

Lower bound 2.16 - 2.40 2.77 - 3.44 

Normal 2.77 - 3.4 2.61 - 3.27 

Upper bound 2.61 - 3.27 2.61 - 3.27 

   

Late Century   

Lower bound 2.77 - 3.44 2.77 - 3.44 

Normal 2.77 - 3.45 2.77 - 3.45 

Upper bound 2.61 - 3.27 2.61 - 3.27 

 

 The vulnerability rating of the Magat River has observed a dramatic increase up to a maximum 

of about 30% beyond the baseline or the current vulnerability rating, for both RCP 4.5 and 8.5 Climate 

Change Scenarios. The current vulnerability range of 1.9 -3.29 is seen to have a minimum value of 

2.62 under RCP 4.5 (Mid-21st Century Scenario Lower bound) up to a maximum value of 4.33 (Mid-

21st Century Scenario Lower bound). For the RCP 8.5 Scenario, the least projected minimum is at 

2.67 (Mid-21st Century Upper bound and Late 21st Century Upper bound) to up to a maximum value 

of 4.3 (Mid-21st Century Lower bound) (Table 8). 
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Table 8. Projected Vulnerability Values of Magat River Basin 

Contemporary 

Vulnerability of Magat 

River Basin 

 

Drought Vulnerability 

Under RCP 4.5 

Scenario 

Drought Vulnerability 

Under RCP 8.5 

Scenario 

1.9 - 3.29 

Mid Century     

Lower bound 2.62 - 4.29 2.71 - 4.30 

Normal 2.71 - 4.33 2.68 - 4.27 

Upper bound 2.68 - 4.25 2.67 - 4.19 

   

Late Century   

Lower bound 2.71 - 4.28 2.71 - 4.3 

Normal 2.71 - 4.30 2.71 - 4.24 

Upper bound 2.68 - 4.27 2.67 - 4.09 

 

 

Discussion: 

 

This study was conducted to assess the impacts of climate change on the drought vulnerability 

of Magat Watershed in terms of the social and economic features of agriculture-dependent 

communities. The results of the projection imply that due to the future changes in rainfall and 

temperature as attributed to climate change, the basin’s overall vulnerability is projected to increase 

to up to 30% beyond the baseline. The potential impact of the drought that was assessed in the study 

is the combined effect of the Basin’s Sensitivity and Exposure to Drought. The AHP-Entropy Method 

of Multi-Criteria Decision Making was used to calculate the baseline value of the Sensitivity and 

Exposure of the basin accounts for 57% and 31% of the basin's overall vulnerability to drought, 

respectively, This may be attributed to the reason that MRB is subjected to type 3 climate where rice 

(lowland) cropping season usually starts from October; corn (dry season) starts on March; and another 

high-value commodity like cabbage being planted from January to March. All months were under 

subsequent drought stress having the cumulative monthly rainfall value of 2014 as the basis where 

relatively below-average rainfall has been recorded distinctly from January to June and the last 

quarter of the year. On the other side, the extent of drought areas is a difficult indicator to satisfy, 

since there is no specific local data per municipality in each subbasin that summarizes the extent of 

drought-affected production. In the study conducted (Macawile, et. al. 2018) where they applied a 

focus group discussion approach (FGD) by coming down to the site and connecting and interviewing 

the farmers. To satisfy this, the indicator was assessed by consulting the farmers inside the concerned 

areas. Hence, there has been an established interrelationship since Sensitivity Indicators mainly 

depend on the meteorology of the area, and the resulting exposure is highly dependent upon these 

indicators e.g. the yield and income losses are two inseparable indicators since the latter is dependent 

on the sensitivity indicators. High-intensity droughts for that matter, induce lesser yield, and lower-

income secured. (Tongson et. al., 2017) 

In hindsight, the vulnerability of the MRB is on a high scale as plausibly indicated by the 

corresponding values of the Basin’s Sensitivity and Exposure to Drought. However, the Adaptive 

Capacity values of 3.17 to 3.99 indicates a high effect of adaptive interventions against drought which 

makes the Adaptive Capacity a negative dimension of vulnerability. Farming is the most prominent 

livelihood of the communities inside the basin, while most of the farmers are also engaging in other 

activities like operating a small-grocery store business, tricycle transport service, construction works, 

and handiworks like word carving and fiber-weaving for an additional source of income. Farmers are 

considered to be the poorest of the poor, (Philippine Statistics Authority, 2017), and the ability to 

adapt is higher for wealthy societies or those who can afford climate protection than for less fortunate 

ones (Fankhauser & McDermott, 2014). Based on the results of the AHP-Entropy Method, the 

Adaptive Capacity component has a constituted weight of only 12% of the total vulnerability value 

of MRB which is the least of all the vulnerability components, implying that as of the moment, 

existing policies and practices may still be improved. The Entropy Weighting Method was applied 

for this matter because it is an objective weighting method and it can eliminate human bias in 
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assigning the corresponding weight to the categories of vulnerability, which is perceived to be highly 

reliant on the quantity of essential available information (Li, et al., 2011). Adaptive capacity is this 

context is the constituted counter measure of the basin to the potential impacts that is the combination 

of drought sensitivity and exposure. The corresponding value of Adaptive Capacity indicators reflects 

the quality and effectivity of the mitigation and in battling the potential impact of drought i.e. 

Sensitivity and Exposure.  

The IPCC Framework (Sharma & Ravindranath, 2019) and principles are at the core of this 

research. The drought Vulnerability of MRB is from 1.96 to 3.29 (Fig. 9 and 10). Subbasin 2 is 

detected to be in a moderate drought vulnerability. While the subbasin houses one of the biggest 

irrigation systems (Magat River Integrated Irrigation System) that supplies an enormous extent of 

rice fields, it is also the watershed that incurs considerable losses during climatic extremes. The basin 

is also at the forefront of receiving capacity programs as it is considered an agro-economic asset for 

rice and high-value crop production. 

The MRB’s overall vulnerability is can be exacerbated to a higher extent by just the changes 

in rainfall, approaching the Mid-21st Century. The potential increment in rainfall in this study is in 

lieu of the findings of (Supharatid & Nafung, 2021) who projected an increase in annual precipitation 

by Mid 21st Century (2050) and Late 21st Century (2100) under both SSP5-8.5 and SSP2-4.5 

Scenarios. The projected sensitivity under the RCP 4.5 and RCP 8.5 Scenario is observed to be lower 

than the estimated sensitivity of the basin. It may seem to be peculiar in the sense that a lower 

sensitivity range has catapulted the vulnerability value to 2.8-3.8 (moderate to high), which means 

that in the future, different areas will be highly vulnerable to drought. In closer inspection, the 

projected change in rainfall using the CLIRAM tool has designated a negative percentage change in 

rainfall concerning the location of the rain gauges. And while it is true that the overall range of 

sensitivity has been projected to be reduced under future climate scenarios, the predetermined high 

rainfall areas were observed to get an additional amount of rainfall towards the end of the century, 

and areas with seemingly lower rainfall events were even more stressed to the projected future 

decrease in annual rainfall. This remark follows the trend that dry areas will get drier and wet areas 

will become wetter (Byrne & O’Gorman, 2015), and it is occurring on a longer time scale as climate 

change’s effects, directly and indirectly, manifest in altering the global and local water cycle due to 

the ever-increasing global temperature as a result of global warming.  

This can be very alarming since as of the moment, communities seem to be unaware of the 

related impacts of climate change and how rainfall variation alone can potentially alter their state of 

living and traditional practices. Cultural norms and other related factors not only limit the 

communities to adjust but the lack of proper promulgation of knowledge through systematic and 

policy enforcement. Initial adaptive measures should not only be employed momentarily but should 

be sustainable in the sense that, scientific-based practices should be downscaled to the farmers and 

related constituents. In their study, Manalo IV, et. al. (2022) found out that the inability of farmers to 

adapt to climate change is also due to some non-climatic stressors. They stated that there are variables 

that do not appear to have anything to do with climate change mitigation and adaptation yet have a 

significant influence on how well coping-mechanisms function, and non-climatic variables that 

directly inhibit the efforts in climate change adaptation. Human activities and interventions that may 

be perceived as non-climate change related may in the end cause stringent social and economic 

limitations that can alter the aptness of adaptive capacity involvement of the communities affected. 

The vulnerability value that was estimated by this study denotes that, parts of MRB are highly 

sensitive and exposed to drought hazards, and that Adaptive Capacity interventions being rendered 

that contribute to counteracting drought-related hazards are still pre-mature and will be continuously 

challenged by changing climate. It only suggests that in order to lower the Basin’s vulnerability, more 

adaptive measures and accompanying policies should be imposed. Other factors such as population 

growth that increases industrial, agricultural, and domestic water demand can also increase 

vulnerability (Sehgal & Sridhar, 2019). Also, future development may impede natural processes that 

can reshape the system’s operations and activity.   

For future research endeavors, systematic consideration of factors to be assessed in drought 

and related studies may also try to look for other opportunities such as using different multi-criteria 

decision-making methods in weighting relative matrices for more transparent discrimination between 

variables intrinsic to vulnerability.  
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Fig. 9. Projected Minimum Drought Vulnerability Rating of MRB. 

 

 
Fig. 10. Projected Maximum Drought Vulnerability Rating of MRB. 

 

 

Conclusions: 

 

This paper gives emphasis refeon agriculture as the main sector in the Magat River Basin and 

the farmers as its major stakeholders through intelligent selection and consolidation of the indicators 

of the respective drought vulnerability components on the agricultural systems of the basin.  

Using AHP-Entropy Weighting Method, GIS-based calculation was employed and deduced 

that the MRB’s Sensitivity and Exposure to drought are highly identical and at the same time 

correlated with a given magnitude of 57% and 31%, respectively.  The weight factor of the 

corresponding countermeasure in terms of Adaptive Capacity at 12% was also deduced. 

 The overall current Vulnerability value of the basin was estimated to be at a low to moderate 

level. However, considering the future impact ascribed by climate change using RCP 4.5 Mid-21st 
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Century normal scenario, it is projected to increase to a moderate to a high level, implying that with 

the currently promulgated and observed mitigation and adaptive measures will become less 

significant in the future, let alone a scenario where communities will not practice proper conservation 

routines. If there will be no changes in the current state of the basin, i.e. the socio-economic aspect 

of agriculture-based communities, Fig. 9 & 10 show that the basin will experience a noticeable 

increase in vulnerability level as we go towards the Mid-21st century, and somehow stabilizes towards 

to end of the 21st century. This projection however is only based on the change in the exposure 

dimension due to the projected change in rainfall and temperature. The other factors were not included 

such as the expected increase of losses in yield and in income is not included, the future extent of 

production areas to be affected by drought occurrences, the future agriculture-dependent households 

to be affected by droughts, etc. still as vital as the currently included indicators. In a broader sense, 

the projected vulnerability tells us one thing. Climate change intensively stimulates the drought 

vulnerability of river basins from a socio-economic perspective. And that there are still other related 

factors that are involved which may add up to worsen the situation, even more than the projected 

level.   

 This study can guide policymakers in conceptualizing management measures and devising 

plans to mitigate the impacts of drought extremes by carefully assimilating science-based studies in 

developing intervention programs in invigorating former adaptive capacity measures and creating 

new schemes in withstanding the effect of climatic anomalies and extremes. In addition, in order to 

establish a more accurate future drought study, the need for adequate meteorological data on the 

ground is of high importance. Vulnerability studies greatly rely on the quality and quantity of data. 

This study shows that MRB’s response to climate disturbances and extremes is can be enhanced thru 

proper collaboration of stakeholders. Furthermore, a locally-based drought assessment and analysis 

using ensemble techniques can give better and more reliable results, such studies can be undertaken 

having this study as baseline data. The topic of climate change can not be contained in a box. It must 

be addressed differently as it can be site specific as influenced by microclimate, or be a part of the 

general system. Hence, quantifying the major aspects of drought vulnerability and integrating climate 

change effects can reduce drought impacts and improve mitigation measures to further benefit the 

stakeholders under climatic-induced threats and stresses. 
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Supplementary Material:  

 

 

Annual Rainfall Under RCP 4.5 for Mid-21st Century (2036-2060). a.) Lower bound b.) Normal c.) 

Upper bound 

 

a.) 

SEASON 
BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 476.4973 209.998 783.7293 153.4972 220.9495 

MAM 579.9517 197.3547 647.7667 197.6932 296.8296 

JJA 844.6776 439.6011 651.3019 567.3632 331.1501 

SON 277.5192 2488.899 997.9401 480.8214 390.1028 

Sum 2178.646 3335.853 3080.738 1399.375 1239.032 

 

b.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 488.3188 216.1222 803.173 157.9736 238.0277 

MAM 621.8232 208.6152 694.5343 208.973 323.8408 

JJA 1099.923 509.8404 848.1127 658.0163 379.2424 

SON 298.6419 2763.819 1073.896 533.9321 472.1573 

Sum 2508.707 3698.396 3419.716 1558.895 1413.268 

c.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 590.1655 276.9683 970.6877 202.4488 316.801 

MAM 739.3135 255.04 825.7629 255.4774 362.596 

JJA 1347.274 580.6852 1038.837 749.4508 459.3963 

SON 331.1383 3126.479 1190.751 603.9931 512.9554 

Sum 3007.891 4239.172 4026.038 1811.37 1651.749 

 

 

Annual Rainfall Under RCP 4.5 for Late-21st Century (2070-2099). a.) Lower bound b.) Normal c.) 

Upper bound 

 

a.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 459.6744 201.5033 763.5378 147.288 215.826 

MAM 633.0723 175.4264 715.4751 175.7273 297.1232 

JJA 1334.117 449.8948 1041.88 580.6486 464.4345 

SON 329.1885 2550.317 1198.93 492.6866 464.3645 

Sum 2756.052 3377.142 3719.823 1396.35 1441.748 
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b.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 462.4024 225.6047 770.2683 164.9048 216.6799 

MAM 636.197 197.5523 719.6632 197.8911 298.5912 

JJA 1336.748 518.923 1048.982 669.7386 465.3506 

SON 329.8384 2907.128 1205.942 561.6175 465.2813 

Sum 2765.186 3849.208 3744.855 1594.152 1445.903 

 

 

c.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 465.1305 295.5382 774.7553 216.0224 218.1743 

MAM 641.1966 246.9403 727.3415 247.3639 301.2336 

JJA 1349.905 650.9244 1059.126 840.1039 470.3888 

SON 333.413 3296.11 1218.796 636.7635 470.7821 

Sum 2789.645 4489.513 3780.019 1940.254 1460.579 

 

 

Annual Rainfall Under RCP 8.5 for Mid-21st Century (2036-2060). a.) Lower bound b.) Normal c.) 

Upper bound 

a.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 431.03 193.0086 708.946 141.0788 210.2756 

MAM 574.3272 184.7114 641.4845 185.0282 296.8296 

JJA 949.9333 471.0876 732.461 608.0008 347.1808 

SON 296.0422 2673.154 1064.547 516.4169 447.8619 

Sum 2251.333 3521.961 3147.439 1450.525 1302.148 

 

b.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 490.5921 214.5417 806.9122 156.8184 239.949 

MAM 633.0723 200.318 707.0988 200.6616 314.152 

JJA 1289.383 587.9513 994.1991 758.8287 446.1136 

SON 324.964 2971.471 1168.548 574.0477 508.8298 

Sum 2738.012 3974.282 3676.758 1690.356 1509.044 

 

c.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 606.9884 276.3756 998.3575 202.0156 295.4532 

MAM 815.5571 258.5959 910.9219 259.0395 344.3928 

JJA 1494.632 682.411 1152.459 880.7415 575.7339 

SON 362.6598 3442.343 1304.1 665.0139 532.6668 

Sum 3279.837 4659.726 4365.839 2006.81 1748.247 
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Annual Rainfall Under RCP 8.5 for Late-21st Century (2070-2099). a.) Lower bound b.) Normal c.) 

Upper bound 

 

 a.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 464.2211 186.0942 756.0595 136.0248 217.5339 

MAM 640.5717 184.7114 707.0988 185.0282 300.6464 

JJA 1351.221 387.5271 1028.692 500.1549 470.8468 

SON 333.413 2468.426 1183.739 476.8664 470.3237 

Sum 2789.427 3226.759 3675.589 1298.074 1459.351 

 

b.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 468.3132 245.3599 760.5465 179.3448 219.6686 

MAM 644.3214 205.6519 710.5889 206.0046 302.1144 

JJA 1360.431 408.1145 1030.721 526.7256 473.137 

SON 335.3628 2883.73 1186.076 557.0974 472.6157 

Sum 2808.428 3742.856 3687.932 1469.172 1467.536 

 

c.) 

SEASON 

BANAUE  

(mm) 

DUPAX  

(mm) 

HALONG  

(mm) 

IMUGAN  

(mm) 

MAGAT  

(mm) 

DJF 471.0412 285.8581 765.0335 208.9468 220.9495 

MAM 651.1958 248.1256 716.1731 248.5512 305.344 

JJA 1373.588 690.2827 1040.866 890.9009 478.6332 

SON 338.9374 3673.393 1198.93 709.6495 478.1166 

Sum 2834.762 4897.659 3721.003 2058.048 1483.043 

 

 

 

Projected Changes (%) in Seasonal Mean Temperature in the Mid-21st Century (2036-2065) 

RCP 4.5  RCP 8.5 

Month 

lower 

bound Normal 

Upper 

bound Month 

lower 

bound Normal 

Upper 

bound 

DJF 32.495 32.563 32.676  DJF 32.537 32.692 32.772 

MAM 32.482 32.573 32.737  MAM 32.595 32.730 32.914 

JJA 32.505 32.598 32.811  JJA 32.621 32.698 32.988 

SON 32.495 32.534 32.791  SON 32.608 32.688 32.920 

Average 32.495 32.567 32.754   32.590 32.702 32.898 
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Projected Changes (%) in Seasonal Mean Temperature in the Mid-21st Century (2070-2099) 

RCP 4.5  RCP 8.5 

Month 

lower 

bound Normal 

Upper 

bound 

Mont

h 

lower 

bound Normal 

Upper 

bound 

DJF 32.537 32.705 32.910  DJF 32.827 33.129 33.322 

MAM 32.598 32.737 33.023  MAM 32.978 33.149 33.499 

JJA 32.634 32.695 33.036  JJA 33.049 33.258 33.612 

SON 32.598 32.669 33.017  SON 33.026 33.194 33.557 

Average 32.592 32.701 32.997   32.970 33.182 33.498 
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FORECASTING DAM INFLOW AND FLOOD INUNDATIONS UNDER 

EXTREME RAINFALL EVENTS USING THE RAINFALL-RUNOFF-

INUNDATION MODEL 

A S Alejandro1*, L A Alejo2, O F Balderama3, J L Bareng4 and S A Kantoush5 

1 National Irrigation Administration, Magat River Integrated Irrigation System, Dam and Reservoir Division, Ramon, 
Isabela, Philippines, arlenalejandro001@gmail.com 

2,3,4 College of Engineering, Isabela State University, Echague, Isabela, Philippines,  
5Water Resources Research Center - Disaster Prevention Research Institute Kyoto University, Kyoto, Japan,  

 

Abstract. The downstream of river basins are prone to flash floods during rainy seasons. Flood forecasting is vital 
in preventing and mitigating flood damages. Flood inundation can be simulated to forewarn the affected areas on 
the possible effect of flood brought by the heavy rainfall events. In this study, the dam inflow and river water level 
were simulated using a successfully calibrated and validated Rainfall-Runoff-Inundation (RRI) Model during a 
strong typhoon. This was done in the Cagayan River Basin (CRB), the largest river basin in the Philippines, with 
a significant dam, which is the Magat Dam during Typhoon Ulysses with international name Vamco. The model 
satisfactorily estimated the inflow in the Dam with RSR, NSE, PBIAS, and R2 equal to 0.36, 0.87, 6.90 & 0.88, 
respectively. Also, the RSR, NSE, PBIAS, and R2 with 0.50, 0.75, -0.39, and 0.75, respectively, showed good 
agreement with the measured river water level data. The RRI calibrated parameters were also tested and validated 
on Typhoon Tisoy in December 2019 and Monsoon Rains in December 2020. Results gave a satisfactory statistical 
index for both Magat Inflow and Buntun Bridge river water levels. The RRI model estimated flood heights ranged 
from >=0 meters at locations relatively far from the riverbanks and >=6 meters along the Cagayan riverbanks 
which is almost the same as the gathered actual data ranged from 0.3 to 7 meters. The calibrated parameter of RRI 
could be used to forecast the inflow of Magat Dam and flood inundation in CRB during extreme weather events 
for effective protective planning, decision-making, and flood early warnings. 
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1.  Introduction 

 
Flooding was responsible for nearly half of all-natural catastrophe-related losses in 2013, with floods in Europe, 
Asia, Canada, the United States, and Australia causing over $20 billion (U.S. dollars) in losses (Coffman, 2013). 
According to World Risk Report, 2015, the Philippines is a country frequently ravaged by natural disasters, 
ranking third in the World Risk Index with a risk percentage of 27.98%. It is also the third most exposed country 
to natural disasters. Flooding is one of the prominent water-based natural hazards (about 50%) across the globe, 
which accounts to 15% of all deaths related to natural disasters. Tropical cyclones and flash floods are the two 
worst disasters in the country, affecting a total of around 132 million citizens (Philippine Disaster Situation, 2014). 
Extreme storms are one of the most prominent climate-related hazards in the Philippines. The torrential rainfall 
intensity and frequency have both escalated since the mid-20th century in the country and in the last decade, the 
tropical storms and cyclones are frequently accompanied by storm surges, high winds, flooding, and landslides 
(Hilly et al., 2016). Typhoon-related damages and monsoonal rains have contributed to the highest damages to 
agriculture. Typhoon Yolanda caused more than P28 billions of damages in agriculture in 2013. In 2014, more 
than P21 billion in damages to coconut areas were dealt with by Typhoon Glenda. Rice production worth P9 
billion was lost due to Typhoons Karen and Lawin in 2016 (Department of Agriculture, 2017). By 2050, losses 
due to floods are expected to intensify which causes the number of individuals susceptible to flooding around the 
globe to rise to 2 billion because of climate change, denuded watersheds, landuse change, sea levels rise, and 
increase in population in flood plain areas (Bogardi, 2004; ICHARM, 2009; Vogel, et al., 2011) 
 
Flood Forecasting with sufficient lead time and accuracy has great significance for effective flood warning and 
emergency response. It is one among the few practical options to cope with floods in many parts of the world. 
There have been observed increase in the trustworthiness of forecasts due to rise in meteorological and 
hydrological expertise, better data collection mechanisms and improved knowledge and models for simulations 
and uncertainty analyses (Jain et al., 2018). Forecasters commonly rely on in situ measurements of precipitation 
and river stage (height of the water above a fixed reference point). Stream gauges often only measure river stage, 
and this must be converted to flow volume using information about the riverbed cross section (which itself often 
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changes). Lack of hydro-meteorological data for model calibration has always been an issue for predicting floods 
in ungauged basins (Pagano et al., 2014). The Philippines, being a developing country, is constrained with lack of 
permanent ground-based weather monitoring stations due to factors like lack of funding which leads to insufficient 
institutional setup and inadequate road infrastructures, among others (Ferraris et al., 2002). Another problem that 
arises when predicting floods in fast-response basins is that peak discharges tend to occur as a result of a localized 
rainfall event and times to peak may be too short for raising adequate warnings based on real time rainfall 
observations (Alejo, 2018). 
 
A basin-wide flood monitoring and warning systems is being implemented sequentially in river basins of the 
Philippines, which suffer from severe floods (Miyamoto et al., 2014). The Cagayan River Basin is one of the 18 
major river basins in the Philippines. It is a large basin comprising 27,281 km2. The Cagayan River Basin in the 
Philippines was used as a case area for the present study. Flooding is one of the perennial problems existing in the 
basin and about 14% of the river basin is susceptible to flooding. Areas near the river systems have high to very 
high susceptibility to flooding of which cover mostly parts of Isabela and Cagayan (Climate-Responsive 
Integrated Master Plan for Cagayan River Basin, nd). All the rainfall coming from the 18 tributaries is being 
discharged in the Cagayan River down to the Babuyan channel at Aparri. It was observed that CRB had problems 
with inundation around main rivers. Riverside municipalities, especially those located on river mouths, experience 
the heaviest inundation (Alfonso et al., 2019). Magat Dam has always been solely blamed to cause floods in 
Cagayan. The inflow coming to Magat reservoir comes from Vizcaya and Ifugao province. Cagayan River Basin 
has 15 sub-basins, one of these is the Magat River Basin. Of all tributaries of the Cagayan River, Magat Dam is 
the only one that has hydrological data closely monitored. Among 18 tributaries of CRB, only the Magat dam can 
regulate the volume of water coming from upstream areas. Magat Dam is the only dam with control gates among 
4 dams (Addalam, Magat, Siffu, and Chico) within CRB, others are already runoff-the-river type dams wherein 
water is continuously flowing. Miyamoto et. Al 2014 also stated that the Cagayan River basin is suffering from 
frequent severe floods as well as other river basin in the Philippines. Although real-time flood monitoring system 
has been installed, floods remain as a serious menace due to torrential rainfall by typhoon and insufficient 
accumulation of reliable hydrological data (Miyamoto et al., 2014). Complex models, such as those physically 
based and distributed, usually require large amounts of hydro-meteorological data, which are commonly not 
available in data-scarce conditions. The main issue for predicting flood hydrograph in data-scarce basins is the 
lack of observational discharge data for the selection and calibration of an adequate model for prediction (Eduardo 
& Puga, n.d.). 
 
Flood forecasting and warning is a prerequisite for flood strategy that should cover the entire river basin area and 
promote the coordinated development and management of actions regarding water, land and related resources. 
successful mitigation of flood damage. If models can be used to identify the extent of flooded areas on a near real-
time basis, the information can be useful for disaster managers to estimate the severity of the damage and to 
prioritize regions for effective rescue work (Water Directors of the European Union, 2003). Flood forecasting 
modelling in small basins is primarily made using rainfall-runoff models, together with radar rainfall, telemetering 
rainfall data or rainfall forecasts, whereas in large basins, this usually involves rainfall-runoff and hydraulic 
models. Predicting floods in data-scarce basins is limited by the availability of good and sufficiently long time 
series of sub-daily rainfall and discharge observations for model calibration (Eduardo & Puga, n.d.). The 
catchment models applied for flood forecasting are categorized based on criteria which is either deterministic or 
data driven depending on how the processes on the catchment basin are characterized; or how the watershed is 
spatially distributed. Integrated equations in deterministic models are being solved which represents the different 
processes in watershed creating results for a certain set of parameters. On the other hand, models that are data-
driven have the ability to mimic the random characteristics and processes that controls streamflow. Data-driven 
models are those that are stochastic in nature (i.e. regression, timeseries and Bayesian) and those timeseries that 
are nonlinear (i.e. Artificial Neural Networks, and Fuzzy) that require big volume and high-resolution 
hydrological data (Water Directors of the European Union, 2003).  
 
The Artificial Neural Networks (ANNs) model has the potential to be used on rainfall-runoff modelling for flood 
forecasting (ASCE Task Committee, 2000a & 2000b). The ANNs, however, are not yet used in flood early 
warning systems operation, (Kneale & Smith,  2001). This is possibly due to several practical issues such as the 
need for huge volume of  data, possibilities of model overfitting to datasets, errors in trend-shift, and not enough 
expertise on parameters (Dawson et al., 2006). Frequently, the reliability of the ANN model-based forecast is 
observed only at small lead times that leads to uncertainty flood event management applications (Prakash & 
Srinivasan, 2014). RR models combines the watershed’s physical characteristics and its hydro-meteorological 
conditions to calculate river discharge and inundation depths. For RR models to adequately perform, it needs 
appropriate representation of the catchment and enough volume of good quality data. Typical distributed rainfall–
runoff models define flow directions from topography, and track water flows along the defined flow directions; 
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therefore, the models are not capable of stimulating flood inundations, with a few exceptions (Yamazaki, D. et 
al., 2011). 

 
For more effective and efficient flood forecasting in the insufficiently-gauged river basin, ICHARM has 
developed Integrated Flood Analysis System called “IFAS” [25]. The Indus-IFAS developed under a UNESCO 
Pakistan project also uses the RRI model for flood simulation over the lower Indus River. Thus, the Indus-IFAS 
becomes a coupling model taking advantages of the two powerful components: IFAS for high-speed simulation 
of runoff in upstream mountains and RRI for flood inundation simulation in downstream rivers. To further expand 
and disseminate the RRI model, ICHARM started the development of GUI in 2014 for easy input and output, and 
released it with an execution program on its website in 2016 [26].  

 
The Rainfall-Runoff-Inundation model is a 2D grid cell-based hydrodynamic model capable of simulating both 
rainfall-runoff and flood inundation processes (Sayama et al., 2012). The RRI model has been successfully applied 
to several regions in the world to simulate flooding events with good performances in all cases (Sayama et al., 
2012, Sayama et al., 2010, Nastiti et al., 2015). Ferrer et al., 2014 conducted flood hazard assessment under climate 
change using a rainfall-runoff-inundation (RRI) model in the Pampanga River basin, Philippines. However, it was 
not used for flood forecasting purposes which is imperative to reduce flood damages. To date, there are still no 
model-based flood forecasting system being used in the country. The RRI could use forecasted rainfall data to 
estimate the inflow that might cause flooding river basins.  Simulated hourly runoff results can be used as an input 
to forecast Dam water levels that could be helpful for water managers and operators of Dams for decision making 
during extreme rainy events. Flood inundation in the River basins can be simulated to forewarn affected areas on 
the possible effect of flood brought by the heavy rainfall events. The RRI is a helpful tool in forecasting flood 
events because it only requires simple data input, calibrations and does not take a lot of time to produce simulated 
results. The RRI quantifies the surface runoff based on the rainfall amount of a certain extreme rain event.  To 
predict flood risk and flood scenarios through the RRI model, it is essential to issue flood warnings and to complete 
evacuation processes in flash flood-prone river catchment areas. 
 
 

2. Methods 
 

2.1 Description of RRI Model. The Rainfall-Runoff-Inundation (RRI) model is a two-dimensional model capable 
of simulating rainfall-runoff and flood inundation simultaneously (Sayama et al., 2012; Sayama et al., 2015a; 
Sayama et al., 2015b). The model deals with slopes and river channels separately. At a grid cell in which a river 
channel is located, the model assumes that both slope and river are positioned within the same grid cell. The 
channel is discretized as a single line along its centerline of the overlying slope grid cell. The flow on the slope 
grid cells is calculated with the 2D diffusive wave model, while the channel flow is calculated with the 1D 
diffusive wave model. For better representations of rainfall-runoff-inundation processes, the RRI model simulates 
also lateral subsurface flow, vertical infiltration flow, and surface flow. The lateral subsurface flow, which is 
typically more important in mountainous regions, is treated in terms of the discharge-hydraulic gradient 
relationship, which takes into account both saturated subsurface and surface flows. On the other hand, the vertical 
infiltration flow is estimated by using the Green-Amp model. The flow interaction between the river channel and 
slope is estimated based on the different overflowing formulae, depending on water-level and levee-height 
conditions (Sayama,2017). 
 
2.2 Brief description of the Case Study Area.  The CRB is located in the northeastern part of Luzon Island. It 
lies between 15o 52’ and 18o 25’ north latitude and between 120o 51’ and 122o 18’ east longitude. The total basin 

area and river length of the Cagayan River is 27,281 km2 and 520 km, respectively. The major tributaries of the 
Cagayan River are the Chico (basin area: 4,550 km2 ), Siffu-Mallig (2,015 km2), Magat (5,110 km2 ) on the left 
side, and Pared (970 km2), Tuguegarao (660 km2), Tumauini (960 km2) and Ilagan (3,130 km2) (Fig. 1). 
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Figure 1. Cagayan River Basin Map 

 

2.3 RRI Calibration, validation, and performance assessment of the Cagayan River Basin RRI model. The 
RRI parameters were adjusted manually based on the largest parameter map unit the RRI model built. These units 
are the dominant combination of soil, elevation, and landcover in the Basin. Inflow data from Magat dam was 
used for the RRI performance assessment. Inundations were validated based on flood stages in flooded areas in 
Isabela and Cagayan. The RRI model for the Cagayan River Basin was assessed based on statistical indices. 
Statistical indicators for model performance evaluation that were used are selected based on the recommendations 
of Moriasi et al. (2007). 

 
The coefficient of determination (R2), Nash–Sutcliffe model efficiency (NSE), RMSE-observations standard 
deviation ratio (RSR), and percent bias (PBIAS) are the most widely used indicators for hydrological studies and 
assessments. The R2 describes the ratio of the variance in observed data explained by the model. R2 ranges from 
zero to one, with higher values indicating less error of variance, and typically values greater than 0.5 are 
considered acceptable (Santhi et al., 2001; Van Liew et al., 2003). The Nash-Sutcliffe efficiency (NSE) is a 
normalized statistic that defines the relative magnitude of the residual variance compared to the observed data 
variance (Nash and Sutcliffe, 1970). NSE of greater than 0.5 is widely considered satisfactory. RSR is the ratio 
between the root mean square error (RMSE) and the standard deviation of the observed values. Zero RSR means 
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there is no error and the model is perfect for simulations. A lower RSR value generally means better simulation 
results and a value <0.7 implies a satisfactory model rating. Percent bias (PBIAS) measures the average tendency 
of the simulated data to be larger or smaller than their observed counterparts [33]. A PBIAS of +/-25% is 
considered satisfactory. 
 
2.4 Data Input. Input needed in RRI are the Digital Elevation Model (DEM), Flow Accumulation, Flow 
Direction, Actual rainfall from Magat Rain gauge instruments, PAG-ASA AWS, and Forecasted Rainfall data. 
For simulation and validation, actual hourly inflow data from Magat Dam was used. Landuse and Soil Maps 
integrated with the RRI model were validated on the ground.   

 
The hourly rainfall data from NIA-MARIIS DRD Flood Forecasting and Instrumentation Section and PAGASA 
AWS (https://philsensors.asti.dost.gov.ph/site/data) was used for the calibration of the model during Typhoon 
Ulysses and rainfall for two (2) other extreme events (Typhoon Tisoy and Northeast monsoon) for validation were 
also collected. All the weather stations with available rainfall data were extracted particularly from the Province 
of Isabela, Quirino, Nueva Vizcaya, Mountain Province, Aurora, Kalinga, Apayao, and Cagayan. There were 69 
weather stations with available rainfall data for Typhoon Ulysses (Nov 8-13, 2020), 49 for Monsoon Rains (Dec 
15-21, 2020) & 92 for Typhoon Tisoy (Dec 1-10, 2019) (Figure 2). 
 

 

 

3. Results and Discussion 
 

3.1 Characterization of Soil Properties in Cagayan River Basin. Soil Type from RRI default was used in the 
calibration of the model (Figure 3a). As shown in Figure 3b, the Soil type from BSWM was reclassified and was 
validated on the part of Magat Watershed. Sandy clay loam, clay loam, and clay were very visible from the default 
soil type data of RRI. The resolution of the two soil maps is one of the apparent differences. Figure 3b shows a 
detailed soil type map within Cagayan River Basin while the default soil map in the RRI model is 30 meters by 
30 meters resolution. It is also apparent that the soils in the BSWM map are more variable than the soils in the 
default RRI map. Notably, it can be observed that there are relatively consistent similarities in the majority of the 
spatial locations of clay loam over the two soil map datasets.  Also, the mountain soils in the BSWM soil map 
were almost consistently classified as Clay in the RRI model default soil map. These differences in soil could be 
a source of variance between the modeled and actual inflow, water level, and flood inundations. 

 

 

 

 

 

 

      
                   a.)               b.)                    c.)  

Figure 2. Available Weather Stations during Typhoon Ulysses (a), Monsoon Rains (b), and Typhoon Tisoy (c) 

https://philsensors.asti.dost.gov.ph/site/data
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a.)               b.) 

Figure 3. The default soil type in RRI (a) and the reclassified BSWM soil type (b) 
 
Lack of actual data for the soil property in the parameter calibration of RRI that includes porosity, hydraulic 
conductivity, and soil depth was also one of the limitations of the model to accurately mimic the actual soil 
properties of the study area. However, most of the said soil parameters were set to zero in the calibration to further 
increase the simulated values of inflow and water level heights. 

 
3.2 Land Cover in Cagayan River Basin. The landcover input used in the model was the default in the RRI 
model (Figure 4a) where the dominated landcover data was broadleaf deciduous forest along the east and west 
borders of the basin, and cropland in the middle part. Figure 4b reveals the 2015 landcover map obtained from 
NAMRIA which is the latest landcover map released to date. It can be observed that the dominant land cover of 
NAMRIA in the middle part of the basin was also crops particularly annual crops and the east and west borders 
are mainly closed and open forests. Figure 5 shows the landcover data validated by ISU-Echague under Project 
IFWARM for the Magat River watershed where the west borders are primarily closed and open forest. The Magat 
River Watershed is located in the Southeastern part of the Cagayan River Basin. 
 

       
        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       a.)                                    b.) 

Figure 4. The default landcover map in RRI (a) and the reclassified NAMRIA 
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Figure 5. Validated Landcover Map (ISUE-PROJECT IFWARM) 
  

Comparing these maps, it can be observed that there are not much differences in the dominant landcover. They 
only differ in nomenclatures which are completely explained by the difference in map data sources.  On the other 
hand, it can be observed that there are more grasslands in the NAMRIA landcover map than the bare soils in the 
RRI default landcover map. These differences in land cover could be a source of variance in modeled and actual 
inflow, water level, and flood inundations on top of the differences in soils. 
 

3.3 Calibration and Performance Validation of Rainfall-Runoff-Inundation Model 

 
3.3.1 The RRI Model Calibrated Parameters. The table shows the parameters that were calibrated in the model. 
During the process of calibration, the parameters that has the most significant effect in the simulated results were 
the Manning's roughness coefficient for river and land (ns river, and ns slope), followed by the vertical and lateral 
hydraulic conductivity (ksv, & ka) which is both set to zero where saturated subsurface + saturation excess 
overland flow are considered and soil depth. Just like the study of Abdel-Fattah et al., (2018) wherein the 
sensitivity analysis for the RRI model was conducted in W. Samail. According to results from sensitivity analysis, 
the most significant parameters in all flow cases are channel roughness coefficient (nriver) and hillslope roughness 
coefficient (nslope). The soil depth and soil porosity (φ) are the second most significant parameters after the 

roughness coefficients. While vertical saturated hydraulic conductivity (kv), lateral saturated hydraulic 
conductivity (k), and unsaturation effective porosity (φu) have a medium impact on the generated hydrographs. 
The suction at the vertical wetting front (Sf) and the lateral unsaturated hydraulic conductivity have a minor impact 
on the model results.  

 
 
Table 1. RRI Calibrated Parameter Values 

Parameter
s Definition Parameter Set 

1 2 3 4 5 6 7 8 9 

ns_river 

channel 
roughness 
coefficient 6.500d-3 

ns_slope 

hillslope 
roughness 
coefficient 

3.000d
-1 

2.000d
-1 

2.500d
-1 

9.000d
-1 

6.000d
-1 

6.000d
-1 

6.000d
-1 

9.000d
-1 

9.000d
-1 

Soil depth soil depth 
2.000d
0 

2.000d
0 

5.000d
-1 

1.000d
-1 

1.000d
-1 

4.000d
-1 

5.000d
-1 

6.000d
-1 

5.000d
-1 

gammaa 
soil 
porosity 

4.640d
-1 

1.670d
-1 

1.670d
-1 

4.640d
-1 

3.980d
-1 

4.630d
-1 

4.750d
-1 

3.980d
-1 

3.980d
-1 

ksv 
vertical 
saturated 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 
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hydraulic 
conductivit
y 

faif / Sf 

suction at 
the vertical 
wetting 
front 

2.185d
-1 

2.185d
-1 

2.185d
-1 

2.088d
-1 

2.088d
-1 

2.088d
-1 

3.163d
-1 

3.163d
-1 

3.163d
-1 

ka 

lateral 
hydraulic 
conductivit
y 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

0.000d
0 

gammam 

unsaturatio
n effective 
porosity 

4.000d
-2 

4.800d
-2 

3.800d
-2 

4.500d
-2 

2.500d
-2 

2.500d
-2 

2.000d
-2 

1.000d
-2 

5.000d
-2 

 
3.3.2 The RRI calibration results using the Magat Inflow and Buntun Water Level. The most severe typhoon 
in 2020, Typhoon Ulysses caused flash floods in many places in Cagayan Valley particularly in Tuguegarao, 
Cagayan was used for the calibration of the RRI model. The result shows the actual and simulated Magat Inflow 
during Typhoon Vamco/Ulysses on November 8-13, 2020 (Figure 6a). The observed maximum inflow was 
recorded on November 12, 2020, at 7:00 pm with 7,128 m3/s while the peak inflow simulated from the Rainfall-
Runoff-Inundation model was 6933.2 m3/s that was also on November 12, 2020, at 7:00 pm. The RRI model 
underestimated the peak flow inflow by only 2.7%.  Also, the RRI model was able to estimate the date and time 
of the peak inflow correctly relative to the observed peak inflow date and time. 

 
The statistical indicators in evaluating the RRI performance in estimating hourly discharge are based on the 
recommendations of Moriasi et al. (2007). The coefficient of determination (R2), Nash–Sutcliffe model efficiency 
(NSE), RMSE-observations standard deviation ratio (RSR), and percent bias (PBIAS) are the most widely used 
indicators for assessments base on the literature reviewed. Based on the statistical indices, the model satisfactorily 
estimated the inflow in Magat with R2, RSR, NSE, and PBIAS equal to 0.88, 0.36, 0.87, 6.90, respectively (Figure 
6c). The simulated peak inflow was estimated by RRI at almost the same time as the actual peak inflow. This is 
particularly important as it is very crucial for flood forecasting in Magat Dam to estimate the peak inflow during 
extreme weather events, especially typhoons. As shown in the computed statistical indices, the coefficient of 
determination (R2) with a value of 0.88 revealed that the estimated inflow shows good agreement with the 
observed inflow data. The coefficient of determination or squared correlation coefficient R2 describes the degree 
of collinearity between simulated and measured data.  Percent bias or PBIAS measures the average tendency of 
the simulated data to be larger or smaller than their observed counterparts. The optimal value for PBIAS is zero 
(0). A positive PBIAS value of 6.90 indicates that the simulated discharge underestimated the actual data. Though 
the peak was underestimated, a difference of 195 cms is considered insignificant. The simulated peak value was 
in close agreement with the actual maximum recorded inflow of Magat during the typhoon. Nash-Sutcliffe 
efficiency indicates how well the plot of observed versus simulated data fits the 1:1 line. The NSE value of 0.87 
is considered satisfactory because the optimal value of Nash-Sutcliffe Efficiency is one (1). The RMSE-
Observation Standard Deviation Ratio, RSR with a value equal to 0.36 determines the accuracy of the model 
concentration of data in the line of best fit. And the value of RSR with 0.36 shows good model simulation 
performance. The lower the RSR, the lower the RMSE, and the better the model simulation performance.  

 
The calibrated RRI model was validated using the water level data at Buntun bridge located in Tuguegarao City, 
Cagayan. Figure 6b shows the actual and simulated Buntun Water Level located in Tuguegarao City, along the 
Cagayan River. The Cagayan River water level in Buntun bridge reached its maximum critical level with 13.3 
meters on November 13, 2020, at 10:00 PM. As observed from the graph, the RRI model simulated river depth 
peaked on November 13 at 13.6 meters at 9:00 AM. The RRI model simulated the peak river height 8 hours earlier 
than the actual. Simulating earlier could be better relative to later peak flow simulations to enable earlier flood 
warning alarms. This way, damages and loss of lives could be prevented. Statistically, the R2, RSR, NSE, and 
PBIAS with 0.75, 0.50, 0.75, -0.39, respectively, showed good agreement with the measured river water level data 
(Figure 6d). A negative PBIAS value of -0.39 indicates an overestimation of the measured data. 
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a.)                                                                             b.) 

 

                             
                                          c.)                                                                                    d.) 

Figure 6. RRI Model Calibration on Typhoon Ulysses at Magat Dam (Left) (a) (c) and Buntun Bridge (Right) (b) (d) 
 

3.4 Validation of RRI Model Calibrated Parameters. The calibrated parameters from Typhoon Ulysses were 
tested and validated on other extreme weather events during Typhoon Tisoy (December 1-10, 2019) and Northeast 
Monsoon (December 15-21, 2020). Results showed that the RRI model has better performance during the 
Monsoon rains in December 2020. Uncertainties on the model can be attributed to the input data used, just like 
Bhagabati S.  & Kawasaki A., 2017 mentioned in their study that several other factors may help improve the RRI 
model: (1) more precipitation data, (2) a consideration of dam operations, and (3) higher-resolution elevation data 
(Jain et al., 2018). Accurate precipitation data are the most important in implementing the model. 

 
3.4.1 RRI Model Validation on Typhoon Tisoy (December 1-10, 2019). It can be seen that the RRI simulations 
statistically agreed with the observed data during typhoon Tisoy with a value of R2, RSR, NSE, and PBIAS of 
0.77, 0.83, 0.30, and 34.81 which is considered satisfactory (Figure 7c). The statistical indices were lower during 
typhoon Tisoy but in terms of simulating the peak flow, the model can get the maximum inflow on December 4 
at 5:00 AM with 1,276.26 m3/s compared to the actual with 1,231 m3/s peaked on the same day at 9:00 AM 
(Figure 7a). The PBIAS 34.81 shows an underestimation of the actual data. The underestimation bias was due to 
the capability of the model to simulate lower inflow values. This can be attributed to the groundwater parameter 
which affects the water on the streams. Abdel-Fattah M. et al. (2018) mentioned that the main source of the bias 
error is the absence of a stable groundwater module in the RRI model (under development), to represent the active 
groundwater processes in W. Samail such as groundwater recharge and seepage to the channel. Even the 
hydrological model has good generation for the hydrograph main peak in terms of value and time to peak, still, 
the model cannot generate some small and minor peaks in the measured data. 

 
The model is also verified in another validation point located in Buntun Bridge wherein the simulated river height 
of 11.75 meters on December 6 at 2:00 AM was closed to the maximum actual data of 12.22 meters on December 
6 at 4:00 AM (Figure 7b). Statistical indices of R2, RSR, NSE, and PBIAS of 0.77, 0.88, 0.23, and 31.86 
respectively are already satisfactory. As revealed in the graph there are simulated data that do not agree with the 
actual (Figure 7d). Based on Jain et al. 2018, in flood forecasting, a model with constant parameters may not be 
able to completely represent the complex processes in a basin. As a result, the simulated hydrograph can differ 
from the observed hydrograph, mainly due to uncertainties in input data, differences between basin physics and 
model structure, model calibration, and changes in catchment characteristics over time. Serban and Askew (1991) 
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categorized these errors as (i) volumetric or amplitude errors, (ii) timing or phase errors, and (iii) shape errors. 
The volumetric errors are mainly attributed to inadequate model structure and basin representation, input/output 
data error, or a combination of these errors. Timing errors may be introduced by the routing component of the 
model or by spatial and temporal discretization, whereas the shape errors are induced mainly in the conversion of 
rainfall to runoff by the model. These three types of errors can occur in different combinations in hydrologic 
models.  

 

 
a.)                                                                    b.)                                                           

             

        
                                      c.)                                                                       d.) 

Figure 7. RRI Model Validation on Typhoon Tisoy at Magat Dam (Left) (a) (c) and Buntun Bridge (Right) (b) (d) 
 

3.4.2 RRI Model Validation on Northeast Monsoon (December 15-21, 2020). The model was also tested in one 
extreme event on December 15-21, 2020 wherein the Northeast monsoon was experienced. Statistical indices of 
R2, RSR, NSE, and PBIAS showed satisfactory values with 0.85, 0.50, 0.75, and 22.36 respectively (Figure 8c). 
The simulated peak was higher with 22.85 percent compared to the actual maximum inflow of 2,755 m3/s on 
December 19, 2020, at 7:00 PM (Figure 8a). The underestimation bias was also due to the lower simulated values 
seen before and after the peak discharge. The amplification of the data was mimicked by the model though it 
occurred earlier than the actual time. Validation on the Northeast Monsoon which affects the Buntun water level 
had better R2, RSR, NSE, and PBIAS of 0.88, 0.35, 0.87, and -1.30, respectively (Figure 8d). The maximum 
simulated river height of 11.98 meters that occurred on December 20, 2020, at 8:00 AM was close to the peak 
river height on the same day at 10:00 PM with 11.68 meters (Figure 8b). A negative PBIAS of -1.30 shows an 
overestimation bias on the actual data which is better than an underestimation bias.  
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a.)                                                                    b.)            

                                                

         
                                    c.)                                                                       d.) 

Figure 8. RRI Model Validation on Monsoon Rains (Left) (a) (c) and Buntun Bridge (Right) (b) (d) 
 

3.5 Flood Inundation in Cagayan River Basin. Figure 9 reveals the gathered actual flood heights caused by 
Typhoon Ulysses in Cagayan. These flood residents’ interviews the said data show that the maximum height was 

located in Annafunan, Tuguegarao City, Cagayan that reached the flood height of 7 meters followed by Baculud, 
Amulung with 5.0 meters. This place is near the Buntun Bridge. The spatial location of these data is mapped out 
in Figure 10 which shows the minimum and maximum flood height in Isabela and Cagayan. The actual flood 
height varies from 0.5 meters in Gattaran, Cagayan to 2.6 meters in Santa Maria, Isabela. The actual data gathered 
however is limited only to places where the validation interview was conducted. 

 

 

Figure 9. Flood Inundation Height during Ulysses 

Cagayan Province Tug. 
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Figure 10. The actual minimum and maximum flood height map (point symbols) along the Cagayan River Basin. 
  

The Inundation Map from RRI in Figure 10 showed the depth of flooding caused by Typhoon Ulysses on 
November 13 at 10 PM. From the actual surveyed data that was gathered on the barangays of each municipality 
located near the Cagayan River, as observed from both Maps, the RRI result is almost the same as the gathered 
actual data with flood height reached during the event. From the RRI map, the concentration of the flood water 
was found to be in the parts of Amulung and Alcala. The maximum flood height in Cagayan was found to be in 
Annafunan, Tuguegarao City. Followed by Baculud, Amulung with 5 meters, and Alcala with 4-meter-high flood 
water. Mozzozin Sur has a 0-4.0 meters flood height. The location of the 4 meters is located in the lowest part of 
the barangay. Reports and social media posts, however, showed that flood heights reached up to the second-storey 
of houses particularly in Tuguegarao City, Cagayan which rendered residents to stay at the roofs of their houses 
during the peak floods brought by Typhoon Ulysses. This could be estimated to be about 6 meters in height. The 
RRI model estimated maximum flood heights to be >= 6 meters. This implies that the RRI model was able to 
capture the flood inundations spatial range and variability in the Cagayan River Basin. 
 
3.6 Cagayan River Subwatershed Discharge to Buntun Bridge During Typhoon Ulysses 

 

 

Figure 11. Cagayan River Subwatershed Upstream of Buntun Map. 
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Table 2. Percent RRI Simulated Discharge (Q) per Subwatershed relative to Buntun Q. 
 

Subwatershed Outlet Basin 
Area (ha) 

RRI 
Simulated 
Maximum 
Peak 
Inflow 
(m3/s) 

% 
Discharge 
(Q) 
Relative to 
Buntun Q  

Time to Peak 
(dd/mm/yyyy hh:mm) 

Buntun Bridge   23,180   13/11/2020 22:00 
Magat Watershed (Gamu) 522,812.08 7306 31.52 12/11/2020 22:00 
Upper Cagayan (Naguillan) 665,090.10 15866 68.44 12/11/2020 18:00 
Siffu-Mallig 194,087.41 3578 15.43 09/11/2020 12:00 
Pinacanauan De Ilaguen 311,716.17 7591 32.75 11/11/2020 0:00 
Pinacanauan De Tumauini 21,114.76 323 1.39 08/11/2020 22:00 
Pinacanauan De San Pablo 34,183.98 564 2.43 08/11/2020 9:00 
Pinacanauan De Tuguegarao 45,090.10 1244 5.37 12/11/2020 12:00 

 
The subwatersheds of upstream of Buntun were mapped out (Figure 11). The simulated discharge was extracted 
on RRI which is located on the outlet of each subbasin. These are the Upper Cagayan wherein the outlet discharge 
that was collected on the part of Naguillan along Cagayan River, the Magat Watershed in Gamu, Siffu-Mallig, 
Pinacanauan de Ilaguen, Pinacanauan de Tumauini, Pinacanauan De San Pablo, and Pinacanauan De Tuguegarao. 
The Percentage inflow relative to Buntun discharge was computed (Table 3). The result shows that the Upper 
Cagayan had the largest peak inflow of 15,866 m3/s which is 68.44% of Buntun Simulated Discharge on 
November 13 at 10:00 PM, Buntun reached its actual maximum critical level of 13.3 meters. The peak time of the 
discharge extracted in subwatersheds’ outlet was shown in Table 3, the RRI simulated discharge in Buntun with 
23, 180 m3/s has peaked on November 13 at 8 AM. It also revealed that the Pinacanauan San Pablo and De 
Tumauini has a peak discharge of 564 and 323 m3/s on November 8, 2020, at 9 PM and 10 PM, respectively 
followed by Siffu-Mallig with a peak of 3,578 m3/s November 9 at 12:00 NN, Pinacanauan De Ilaguen with 7,591 
m3/s on November 11 at 12:00 AM while in the Upper Cagayan (the discharge data was extracted in Naguillan) 
with 15,866 m3/s which appears to be the subwatershed with the largest amount of discharge contribution peaked 
on November 11 at 6 PM. The last to reach the maximum discharge was the Magat Watershed (at Gamu outlet) 
with 7,306 m3/s on November 12 at 10 PM. The simulated discharge implies that the other subwatershed had 
already contributed to the flood height in low-lying areas in Isabela and Cagayan during Typhoon Ulysses. 

 
 

4. Conclusion 
 

This study assessed the performance of the Rainfall-Runoff-Inundation model to estimate the Magat dam inflow, 

river water level, and flood inundations in Cagayan River Basin. The results revealed that the RRI model could 

be used for estimating the Magat dam peak inflow as well as the peak’s time and date. This could be a good basis 

for the conduct of pre-emptive water release in the Magat dam. Furthermore, it will provide necessary decision 

support for early flood warning alarms in the frequently flooded areas along the Cagayan River. Hence, the RRI 

model was able to satisfactorily estimate the river water level in the Buntun bridge located in Tuguegarao City, 

Cagayan. Moreover, the simulated time of peak flow was 8 hours early which could already be used as a good 

basis for early evacuation advisories. The flood inundations variability in the Cagayan River Basin was also 

captured by the RRI model. Based on the simulated discharge of Cagayan River tributaries during Typhoon 

Ulysses, the Magat dam and Magat River is not the sole contributor to the floods downstream. Results showed 

the potential of the Rainfall-Runoff-Inundation model as a science-based decision-making tool during extreme 

rainfall conditions. It can be used for flood forecasting, early flood warning systems, evacuation implementations, 

and emergency response. It could also be used as inputs to flood risk mapping and flood risk mitigations and 

adaptations plans and projects. 
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ABSTRACT  
The downstream of Cagayan River Basin (CRB) has been experiencing flash floods yearly during the rainy 
season. Flood forecasting is vital in preventing and mitigating flood damages. Flood inundation can be simulated 
to forewarn the affected areas on the possible effect of flood brought by the heavy rainfall events. In this study, 
the inflow in Magat Dam and water level in Buntun Bridge located in Tuguegarao City was simulated using the 
successfully calibrated Rainfall-Runoff-Inundation (RRI) Model using Typhoon Ulysses. The model 
satisfactorily estimated the inflow in Magat with RSR, NSE, PBIAS, and R2 equal to 0.36, 0.87, 6.90 & 0.88, 
respectively. Also, the RSR, NSE, PBIAS, and R2 with 0.50, 0.75, -0.39, and 0.75, respectively, showed good 
agreement with the measured river water level data. The RRI calibrated parameters were also tested and 
validated on Typhoon Tisoy in December 2019 and Monsoon Rains in December 2020. Results gave a 
satisfactory statistical index for both Magat Inflow and Buntun water levels. The RRI model was able to capture 
the flood inundations spatial range and variability in the Cagayan River Basin.The calibrated parameter of RRI 
could be used to forecast the inflow of Magat Dam and flood inundation in CRB during extreme weather events 
for effective protective planning, decision-making, and flood early warnings.  

 
Keywords: forecasting; inflow; validation; simulated; calibrated; satisfactory 

 
INTRODUCTION 
Flood Forecasting with sufficient lead time and accuracy has great significance for effective flood 
warning and emergency response. The Rainfall-Runoff-Inundation model is a 2D grid cell-based 
hydrodynamic model capable of simulating both rainfall-runoff and flood inundation processes. The 
RRI model has been successfully applied to several regions in the world to simulate flooding events 
with good performances in all cases (Sayama et al., 2012; Nastiti et al., 2015). Thus, this study was 
conducted to assess the performance of the Rainfall-Runoff-Inundation Model and simulate runoff 
and flood inundation during heavy rain events in Cagayan River Basin. 
 

The RRI parameters were adjusted manually based on the largest parameter map unit the RRI model 
built. These units are the dominant combination of soil, elevation, and landcover in the Basin. Inflow 
data from Magat dam was used for the RRI performance assessment. Inundations were validated based 
on flood stages in flooded areas in Isabela and Cagayan. The hourly rainfall data from NIA-MARIIS 
DRD and PAGASA online website was used for the calibration of the model during Typhoon Ulysses 
and rainfall for two (2) other extreme events (Typhoon Tisoy and Northeast monsoon) for validation 
were also collected. Statistical indicators for model performance evaluation that were used are the 
coefficient of determination (R2), Nash–Sutcliffe model efficiency (NSE), RMSE-observations 
standard deviation ratio (RSR), and percent bias (PBIAS). 
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MAIN RESULTS 
Typhoon Ulysses was used for the calibration of the RRI model. Based on the statistical indices, the 
model satisfactorily estimated the inflow in Magat with RSR, NSE, PBIAS, and R2 equal to 0.36, 0.87, 
6.90 & 0.88, respectively. The observed maximum inflow was recorded on November 12, 2020, at 7:00 
PM with 7,128.00 m3/s while the peak inflow simulated from the RRI model was 6933.20 m3/s that was 
also on Nov. 12, 2020, at 7:00 pm. The RRI model was able to estimate the date and time of the peak 
inflow correctly relative to the observed peak inflow date and time. This is very important for flood 
forecasting in Magat Dam to estimate the peak inflow during extreme weather. Also, the simulated river 
depth that peaked on Nov. 13 at 13.6 meters at 9:00 AM was 8 hours earlier than the actual maximum 
critical level of 13.3 meters on Nov. 13, 2020, at 10:00 PM. Simulating earlier could be better relative 
to later peak flow simulations to enable earlier flood warning alarms. Statistically, the RSR, NSE, 
PBIAS, and R2 with 0.50, 0.75, -0.39, and 0.75, respectively, showed good agreement with the measured 
river water level data.  
 

 
Figure 1. RRI Model Calibration on Typhoon Ulysses (a) and Validation on Typhoon Ulysses (b) and 
Monsoon Rains (c) at Magat Dam (Left) and Buntun Bridge (Right) 
 
The calibrated parameters from Typhoon Ulysses were tested and validated on other extreme weather 
events during Typhoon Tisoy (December 1-10, 2019) and Northeast Monsoon (December 15-21, 2020). 
The RRI simulations in Magat inflow statistically agreed with the observed data during typhoon Tisoy 
with a value of R2, RSR, NSE, and PBIAS of 0.77, 0.83, 0.30, and 34.81 which is considered 
satisfactory. In terms of simulating the peak flow, the model can get the maximum inflow on Dec. 4 at 
5:00 AM with 1,276.26 m3/s compared to the actual with 1,231 m3/s peaked on the same day at 9:00 
AM. The PBIAS value of 34.81 indicated underestimation of the actual data. This can be attributed to 
the groundwater parameter which affects the water flow on the streams. Abdel-Fattah M. et al. (2018) 
mentioned in their study that the main source of the bias error is the absence of a stable groundwater 
module in the RRI model which is under development. Also, the simulated river height of 11.75 meters 
on December 6 at 2:00 AM was closed to the maximum actual data of 12.22 meters on December 6 at 
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4:00 AM. Statistical indices of R2, RSR, NSE, and PBIAS of 0.77, 0.88, 0.23, and 31.86, respectively, 
are already satisfactory. Validation on Northeast Monsoon on December 15-21, 2020 also showed 
satisfactory statistical indices of R2, RSR, NSE, and PBIAS with 0.85, 0.50, 0.75, and 22.36, 
respectively. The simulated peak was higher with 22.85 percent compared to the actual maximum 
inflow of 2,755 m3/s on December 19, 2020, at 7:00 PM. Buntun water levels had satisfactory R2, RSR, 
NSE, and PBIAS of 0.88, 0.35, 0.87, and -1.30, respectively. The maximum simulated river height of 
11.98 meters that occurred on December 20, 2020, at 8:00 AM was close to the peak river height on the 
same day at 10:00 PM with 11.68 meters. Uncertainties on the model can be attributed to the input data 
used, just like Bhagabati S.  & Kawasaki A., 2017 said that more precipitation data, consideration of 
dam operations, and higher-resolution elevation data can improve the RRI model. Moreover, flood 
inundations were validated based on the residents’ interview on the actual flood heights during typhoon 
Ulysses which shows the maximum height of 7 meters located in Annafunan, Tuguegarao City, 
Cagayan. The model estimated flood height in Amulung, Cagayan that ranged from >=0 meters at 
locations relatively far from the riverbanks and >=6 meters along the Cagayan riverbanks. Based on 
actual flood height data gathered, the actual flood height in Amulung ranged from 0 meters to 5 meters 
which were within the range of RRI simulated flood height. Also, reports and social media posts showed 
that flood heights reached up to the second-storey of houses mostly in Tuguegarao City during the peak 
floods. The model’s estimated flood heights to be >= 6 meters. The RRI model was able to capture the 
flood inundations spatial range and variability in the Cagayan River Basin. 
 

CONCLUSION 
This study could be a good basis for the conduct of pre-emptive water release in the Magat dam. It will 
provide decision support for early flood warning alarms in the frequently flooded areas along the 
Cagayan River. Results showed the potentials of the RRI model as a science-based decision-making 
tool during extreme rainfall conditions. It can be used for flood forecasting, early flood warning 
systems, evacuation implementations, emergency response, inputs to flood risk mapping, flood risk 
mitigations, adaptations plans, and projects.  
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ABSTRACT 
Because recurring floods in the Philippines have become more damaging throughout time, risk assessments, 
quantifying, and visualizing flood damages as accurately as possible becomes imperative. To deal with an up-to-
date database containing information and a practical assessment tool, a satellite imagery-based method was used 
which aimed to map flood inundation using the Google Earth Engine and estimate damages brought by the flood 
during Typhoon Ulysses. Analysis of the recent flood inundation event in November 2020 in Cagayan Valley 
showed the inundation of an extensive area of 502.86 km2 affecting the Cagayan province at 53.96% and Isabela 
province at 45.93% share of inundation. The flood severely affected approximately 477.44 km2 of the total 
croplands. Using a participatory validation approach, the overall accuracy of datasets used is 97.78% while flood 
extent is 95%. Through this study, the framework, approach, and methodology can be replicated in other locations 
in the country.  
 
Keywords: flood mapping; synthetic aperture radar; flood risk assessment; Google Earth Engine; damage 

1. INTRODUCTION 

 

The recent flooding in 2020 was brought by the succeeding occurrences of six (6) tropical cyclones in 
the country, the last of which is Typhoon Ulysses, bringing unprecedented rains to the Cagayan Valley 
region resulting in unexpected floods heights and extensive inundation to the provinces of Isabela and 
Cagayan. Flood risk assessment requires quantifying flood risk damages as accurately as possible 
(Meyer et al, 2009). An up-to-date database containing information on hazard-prone regions is critical 
for supporting hazard preparedness and response operations, particularly in the case of recurring floods. 
However, just extracting and mapping these resources alone is laborious (Hermann et al., 2007) while 
the adoption of the traditional approach is time-consuming and expensive. Flood damage estimate using 
GIS and RS has become a useful instrument for developing a near real-time flood mapping and effective 
flood risk mitigation policy (Shrestha et al., 2013; Manfre et al., 2012). Hence, this paper aimed to 1) 
map flood inundation using Google Earth Engine (GEE), and 2) estimate the damages brought by the 
flood during Typhoon Ulysses. 
 
In the Philippines, Ghaffarian et al. (2020) suggest the use of GEE in post-disaster recovery monitoring 
in Leyte brought by Typhoon Haiyan in 2013. Flood mapping using GEE and damage assessment of 
different datasets to identify flood-risked resources will be the foremost in the country. GEE can offer 
an estimation of flood damages but in very low-resolution datasets (MODIS land cover 500m, JRC 
Population 250m) thereby affecting the accuracy of reports. With the readily available, free, up-to-date, 
and high-resolution data accessible in OpenStreetMap (OSM) and obtainable from National Mapping 
and Resource Information (NAMRIA), a comprehensive database containing information relevant for 

mailto:ifwarm@isu.edu.ph
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flood analysis were collected and analyzed in this study. Since GIS and RS have proven their capability 
in flood mapping, the study is very timely and significant especially in the case of the Philippines.  
 
Below summarizes the overall methodological framework used in the study. Two validations were performed: 
for datasets and flood extent. A post-flood survey was conducted to determine the threshold for 
estimating flood extent in GEE. Flood maps and flood-risked resources were quantified and tabulated. 
Validation of map accuracy through a quick post-flood participatory approach was done. 
 

 
2. MAIN RESULTS 

 

Figure 1 displays the resulting inundation map using GEE. As shown in Table 1, two provinces in the 
region were greatly affected by a series of typhoons in November 2020. Cagayan was the most affected 
(271.35km2) of about 9.36% of its area flooded, followed by Isabela (230.98; 2.62%). On the other hand, 
Kalinga (0.5 km2), Ifugao (0.02 km2), and Apayao (0.01 km2) had minimal damages of less than a square 
kilometer flooded area. Approximately 7,378 built-up and 225,633 people were affected. 
 

 
Figure 1. Final flood inundation map of Typhoon Ulysses in November 2020 
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Table 1. Summary of flooded area and damages per affected province in Cagayan River Basin 

 
 

3. CONCLUSION  
 

The high-resolution datasets that are readily available in the Philippines were used instead of the default 
materials used by GEE and may be utilized by flood mappers without difficulty. The concurrent flood 
study imposes adopting an integrated, multi-hazard, multi-stakeholder, approach with an emphasis on 
disaster risk mitigation, preparedness, streamlining of the relief distribution system, with an emphasis 
of self-reliance on LGUs and NGOs for sustenance with local resources and practices. Future work will 
be aimed to use the workflow applied in assessing flood damages for other typhoon events in the 
Philippines. A set of technical and institutional recommendations are to be firmed up in consultation 
with the Cagayan River Basin Management Council and the Cagayan Valley Regional Disaster 
Management Council. 
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ABSTRACT  
 
This study was conducted to assess the impacts of climate change on the inflow of Magat Reservoir using the Soil 
and Water Assessment Tool (SWAT) Model. The knowledge of inflow is essential in scheduling dam discharges, 
estimating current and future power production, and preventing floods. The SWAT calibration results showed an 
NSE of 0.73, R2 of 0.74, RSR of 0.52, and PBIAS of 8.24 while the validation resulted in an NSE of 0.57, R2 of 
0.62, RSR of 0.47, and PBIAS of 9.90. The model showed that there would be at most a 20.42% increase and 
27.08% decrease in inflow for wet and dry years, respectively. Peak inflows were observed during September and 
October. The results of the model can be used as a basis for long-term strategic plans of the Magat Dam 
Management to prepare and respond to future climate risks in the reservoir. 
 
Keywords: Climate Change; Inflow; Peak; SWAT  
 

INTRODUCTION 

 
The Philippines is highly vulnerable to the impacts of climate change, including sea-level rise, 
increased frequency of extreme weather events, rising temperatures, and extreme rainfall. With the 
impact of climate change, both man-made and land-cover changes, watersheds as well as water 
resources have been constantly affected. To assess the impact of climate change on water resources, 
the Soil and Water Assessment Tool (SWAT) model has been used as an effective tool to illustrate the 
impacts of climatic change on hydrologic and biogeochemical cycles in a variety of watersheds (Arnold 
et al.,1998). Consequently, this study was conducted to parameterize, calibrate, validate and simulate 
the SWAT model; quantify the effects of future climate change on the inflow of Magat Reservoir, and 
determine the peak flow. 
 
Climatic and spatial data were gathered from different agencies. Monthly simulation, calibration, and 
validation were done using a 31-year (1990-2020) historical data with the 3-year warm-up period 
(1990-1992). Moreover, 18 year-data (1993-2010) was used for calibration while 10-year data (2011-
2020) were used for validation. Calibration was done using a trial-and-error method and SWATCUP 
SUFI2. The Coefficient of Determination (R2), Nash-Sutcliffe Model Efficiency (NSE) and Root Mean 
Square Error (RMSE), and percent bias (PBIAS) were used to measure the acceptability of the SWAT 
model. Scenario analysis was also used to evaluate the impacts of climate variability on the inflow of 
the reservoir. These scenarios were based on the recent climate projections published by the Philippine 
Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA). The climate 
scenarios considered were medium-range and high-range emissions for two-time frames: mid-21st 
century (2036-2065) and late 21st century (2070-2099). The mid and high-range scenarios were then 
further categorized into three percentiles: lower bound (driest possible change); normal bound (normal 
possible change); and the upper bound (wettest possible change).   
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MAIN RESULTS 

The table below shows the 17 most influential parameters and their values according to manual 
and SWAT-CUP calibrations. A study made by Arceo et.al. (2018) mentioned six parameters 
that were considered influential: Initial SCS runoff curve number (CN2), Base-flow alpha factor 
(ALPHA_BF), Groundwater delay time (GW_DELAY), Threshold depth of water in the 
shallow aquifer required for return flow to occur (GWQMN), Groundwater “revap” coefficient 

(GW_REVAP), and Soil evaporation compensation factor (ESCO). The same parameters were 
also found out to be influential to the inflow of the Magat Reservoir as seen in Table 1. 

The calibration and validation result in a satisfactorily acceptable model. Calibration shows that the 
model has an NSE of 0.73, R2 of 0.745, RSR of 0.52, and PBIAS of 8.24, which are all considered 
statistically acceptable when compared to the indices that were set. The validated model has an NSE of 
0.57, R2 of 0.62, RSR of 0.47, and a PBIAS of 9.90.  Figure 1 shows that the model generally 
underestimated the peak flows. This is one of the known limitations of the SWAT model. Alejo, L. 
(2019) also satisfactorily calibrated and validated a SWAT model in Maasin River Watershed in Laguna, 
the Philippines using actual streamflow. Her calibration process had 0.82 R2, 82% NSE, 0.024 RSR, 
and a PBIAS of 3.7%. This suggests that SWAT can be locally applied in river basin conditions in the 
country.  
 

Figure 1. Calibration (left) and validation (right) results of the SWAT model.  

Table 1.  Sensitive Parameters during the Calibration of the model 
Parameter Description Calibrated 

Value 
1. CN2.mgt Initial SCS curve number for moisture condition II 35.65 
2. ALPHA_BF.gw              Baseflow alpha factor 1 
3. GW_DELAY.gw            Groundwater delay 0.1 
4. GWQMN.gw                 Threshold depth of water in the shallow aquifer 

required for return flow to occur 
600 

5. GW_REVAP.gw              Groundwater "revap" coefficient  0.02 
6. ESCO.hru                 Soil evaporation compensation factor 1 
7. EPCO.hru Plant uptake compensation factor 1 
8. CH_K2.rte Effective hydraulic conductivity in the main channel 

alluvium 
500 

9. ALPHA_BNK.rte            Baseflow alpha factor for bank storage  1 
10. SOL_AWC ().sol          Available water capacity of the soil layer 0.01 
11. SOL_K ().sol Saturated hydraulic conductivity 2000 
12. SOL_BD ().sol          Moist bulk density 2.5 
13. OV_N.hru  Manning's value for overland flow 0.01 
14. RCHRG_DP.gw  Deep aquifer percolation factor 0.01 
15. HRU_SLP.hru Average slope steepness 0.6 
16. SURLAG.bsn Surface runoff lag coefficient 4 
17. LAT_TIME.hru  Lateral flow travel time 30 
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The simulation results incorporating the climate change scenarios showed that under the RCP 4.5 
scenario for the mid-21st century, there would be a 27.08% and 7.9% decrease of inflow for dry and 
normal years while there would be an increase by 10.08% in the wet year. Under RCP 8.5 Mid-21st 
century scenario, there would be a decrease of inflow by 18.46% during the dry years and an increase 
of inflow by 0.72% and 18% during the normal and wet years, respectively. Under the RCP 4.5 
scenario in the late 21st century, there was an anticipated decrease of inflow by 21.73% and 4.7% 
during the dry and normal years, while there was an increased inflow by 15.89% for wet years. Under 
the RCP 8.5 scenario for the Late 21st century, there would be a decrease of inflow for both dry and 
normal years by 24.01% and 11.31%, respectively, while there was an anticipated increase of the 
inflow during the wet years by 20.42%.  Furthermore, the simulation results showed that at least 
119.61 m3/s, 140.86 m3/s, and 169.06 m3/s can be expected as monthly peak inflows in the Mid-21st 
century under RCP 4.5 for dry, normal, and wet years, respectively. On the other hand, at least 
211.3675 m3/s, 256.87 m3/s, and 297.285 m3/s can be expected as monthly peak inflows of the Magat 
reservoir in the years 2036-2065 (mid-21st century) under RCP 8.5 for dry, normal, and wet years, 
respectively. Meanwhile, in the Late 21st century under RCP 4.5, at least 203.19 m3/s, 238.13 m3/s, 
and 287.06 m3/s can be expected as monthly peak inflows for dry, normal, and wet years, respectively. 
Conversely, under RCP 8.5 Late 21st century scenario, at least 192.61 m3/s, 214.85 m3/s, and 317.12 
m3/s can be expected as monthly peak inflows for dry, normal, and wet years, respectively.  In 
addition, the highest inflow of water to the reservoir is anticipated from September and October.   
 

CONCLUSION 

Climate change will lead to increase in inflow during wet years and decrease in inflow during dry years. 
The results of the model could be used as a basis for the development of long-term plans of NIA-DRD, 
RBC, and LGUs to prepare and respond to future climate change impacts and resolve the risks related 
to water resources especially in the reservoir. Also, the results could pave the way towards the design 
of various interventions to take care of the watershed and its river networks and reduce the negative 
impacts of climate change on the Magat reservoir in the future. 
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ABSTRACT 
 
Extreme climate events, such as heavy rainfall, heat waves, and drought, have become the most common natural 
disasters, exacting a high toll on people and economies. As a result, their frequency and losses increase, stressing 
governments' and humanitarian organizations' response capacities. Addressing the consequences and occurrence 
of these disasters always has a significant challenge in the Philippines, particularly at Cagayan River Basin, due 
to increasing population and the impacts posed by climate change. One of the many approaches to addressing this 
challenge is to make better use of climate information and tailor it to predict better the probability of occurrences 
and associated risk for such disasters before they occur. This study is conducted to help meet these challenges 
considering the spatio-temporal assessment of climate change impacts on extreme climate events based on 
comprehensive assessment of extreme rainfall and temperature indices using data for worst-case climate change 
scenarios MRI-AGCM3.2S. The results have shown an increased risk from the severe dry spell and wet spell in 
future period over CRB than past, which may lead to higher vulnerability for drought and flood.  

Keywords: Extreme Climate Indices, Climate Risk, Climate Change Adaptation, Spatio-temporal modeling. 
 
1. INTRODUCTION  

 
Frequent heavy precipitation events and severe droughts are likely to increase due to the adverse effect 
of climate change and a greater degree of fluctuation in precipitation and temperature (IPCC, 2007; 
Carter et al., 2007). The most critical impacts are affecting water resources, which directly affect 
agricultural systems and food security. And, the Cagayan River Basin (CRB) in the Philippines is the 
largest, covering a total land area of 27,493.49 km2, currently facing critical issues of rapid climate 
variability and frequent occurrences of hydroclimatic extremes events such as flood, drought, etc. These 
are the significant constraints that somehow prevent further development in CRB. By looking into 
climate change, the situation may worsen in the upcoming period over CRB, which is predicted to 
increase the magnitude and frequencies of droughts and floods. Therefore, given the significance of the 
current problems and future risk, there is a strong need for an integrated approach to study climate 
change, combing aspects of climate projections and predicting future potential risk towards achieving 
sustainable development goals (SDGs). This research has been conceptualized to explore the spatial and 
temporal changes in climate variability and extreme climate indices using long-term historical and future 
climate data to identify the present and future potential climate change risk over CRB. 

The Spatio-temporal modeling approach by Sen's slope estimation using Mann Kendall's test was 
applied to analyze the variability and magnitude of change in climate variables and extreme climate 
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indices, using the meteorological variables obtained from high-resolution CMIP6 simulation data 
produced by MRI-AGCM3.2S over historical (1951-2014) and future (2015-2099) period. This study 
estimated the extreme climate indices such as CDD, CWD, R95p, TX90p, and TN90p, considering the 
most important and relevant for agriculture and water resource protection point of view to identify the 
level of climate change risk (Table 1) 

Table 1: Indices for characterizing temperature and rainfall extremes (Source: ETCCDI) 

Precipitation Indices Temperature Indices 

Indices Definition Unit Indices Definition Unit 

PRCPTOT Total Annual Precipitation mm/yr TX Mean daily max. 
temperature 

0C 

CDD Consecutive Dry Days: Number of 
Spell of five consecutive days with 
rainfall <1mm per year 

days TN Mean daily min. 
temperature 

0C 

CWD Consecutive Wet Days: Number of 
Spell of five consecutive wet per 
year with rainfall <1mm 

days TX90p Amount of hot days: 

Percentage of days when 
TX>90th percentile 

% 

R95p Very wet days rainfall: Annual total 
rainfall when daily rainfall exceeds 
the 95th percentile of wet days 

Mm/yr TN90p Amount of warm nights: 

Percentage of days when 
TN>90th percentile 

% 

2. MAIN RESULTS 
 

To investigate the variability and magnitude of change in climate variables and extreme climate indices 
over historical and future climate change, the relative changes over space and time were estimated and 
illustrated in Figure 1.  

The analysis indicated some promising key results across each sub-basin. First, the intra-annual rainfall 
has shown an increasing trend over the future period, with a higher fluctuation rate in minimum and 
maximum annual rainfall. This will cause the top occurrences of droughts where precipitation has been 
observed decreasing trend over the sub-basins, namely Chico, Magat, Cagayan Segment1 during the 
future period. On the other hand, floods will like to occur where precipitation has shown an increasing 
trend over sub-basins like Siffu-Mallig, Ganano, and Addalam over the future period over the Cagayan 
River Basin (Figure 1). The findings also revealed that the Addalam sub-basin would experience an 
increase in average annual rainfall and an increase in the percentage of consecutive dry days in the future 
compared to the past. This indicates that there will be a higher probability of increasing risk for intense 
dry spells and heavy precipitation events that may cause severe drought and flood events in Addalam 
sub-basin at the Cagayan River Basin. 

Understanding knowledge about the identification and probability of occurrences of extreme climate 
phenomena is always crucial for managing climate-related risks. Furthermore, as the world continues to 
warm, more extreme weather events can be expected in the future. Hence, these results would be an 
easy-to-use resource to tackle the high-risk zone and provide guidance to the disaster risk reduction 
authority to take an appropriate decision for implementing the adaptation strategies. 
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Figure 1: Spatio-temporal changes in rainfall and key extreme climate indices (CDD, CWD) at CRB. 

3. CONCLUSION 
 

A consistent increase in temperature and precipitation is likely to bring prolonged dry spells leading to 
droughts and wet spells leading to intensive floods at the Cagayan River Basin. However, the climate 
change risk will not be uniform; some sub-basins will experience higher vulnerability than the other 
sub-basins, significantly accelerating the different changes of hydroclimatic extremes. Therefore, 
spatiotemporal modeling is significant to determine the changes over space and time across river basins 
and is helpful for the effective implementation of adaptation strategies. 
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ABSTRACT 
 
Climate change threatens the security of communities, economic activities, ecological services, and water supply 
to a range of users in the Vu Gia-Thu Bon and Cagayan river basins, which are among the most important river 
basins in Vietnam, and the Philippines, respectively. Furthermore, human interventions such as deforestation, sand 
mining, dam construction, and expansion of irrigation systems have intensified the climate change impacts. On 
the other hand, sediment supply downstream will be beneficial to improve river geomorphology creating suitable 
habitat, reducing coastal erosion, and increasing the safety of hydraulic structures. Therefore, this project has been 
implemented for assessing the impacts of climate change and human interventions on reservoir sedimentation, 
flood inundation, agricultural practices, and river and coastal erosion in the Vu Gia-Thu Bon and Cagayan River 
basins. The ultimate goal is to transfer the results of the project to the stakeholders and policy decision-makers to 
implement into the national laws, with involved organizing some training courses, seminars, and workshops to 
train the young researchers, stakeholders, policymakers, local communities as well as to expand the collaborative 
network with other ASIAN countries and global change programs. In the end, this will help enhance networking 
and cooperation in Asia and the Pacific region to understand and resolve floods and sediments issues and foster  
the next generation of participating scientists to keep the specialist network in the future.  

Keywords: Coastal erosion risk, Climate change, Flood and Sedimentation, River basin management 
 
1. INTRODUCTION  

 
Climate change poses a significant threat from devastating floods and droughts to the world. Vietnam 
and the Philippines are among the most affected countries by climate change and rainfall variability 
(Principe, 2012; Souvignet et al.,2014). It has been predicted to increase extreme floods and droughts 
(Hoanh et al., 2010). In recent years, flooding has become more common in the Vu Gia-Thu Bon river 
basin in Vietnam, with higher flood peaks and more severe inundation. (Do et al.,2018; Nga,2019). 
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Reservoir sedimentation is a primary factor in the river and coastal erosion in Vietnam and the 
Philippines. Figure 1 conceptualizes the main drivers facing the river basin from the watershed until the 
delta. Climate change causes alteration in hydrological patterns, resulting in accelerated reservoir 
siltation rates and loss of reservoir function. Therefore, optimizing dam operation and reservoir sediment 
management is highly crucial for the sustainability of a river basin. Therefore, sustainable development 
in a river basin requires an "integrated flood and sediment management" approach. All water-related 
issues must be addressed and managed appropriately collaboratively throughout the basin. 

 

Figure 1. Challenges affect the river basin system due to anthropogenic effects caused by hydraulic 
infrastructure such as dams. 

 

Figure 2 shows the map of the Cagayan River Basin, which is located in the northeastern part of the 
Philippines. The catchment area of 27,753 km2 covers four regions. Cagayan is the longest river with 
more than 20 tributaries and the largest river by discharge volume of water in the Philippines. However, 
current water consumption is minimal, and water resources are sufficient to supply domestic, industrial, 
and irrigation needs. 

 
Figure 2. The study area of the Cagayan River Basin in the Philippines  
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Flood inundation, drought, and soil erosion are the major causes of slow economic development and 
environmental degradation intensified by anthropogenic activities. In 2020, five successive typhoons hit 
the basin before Ulysses caused a severe inundation at two central provinces, Cagayan, Isabela, Kalinga, 
and Ifugao. 

To achieve integrated flood and sediment management, we apply field surveys, numeric simulation, 
remote sensing, training, workshop to share the results, and technology transfer. The general 
methodology of the proposed research starts with data collection of various data types. Then, data 
analyses are performed to understand the fundamentals of the study areas and preparation of inputs for 
modeling. Following that, numerical models are established to predict the future changes of the 
concerned problems so that countermeasures can be proposed, as shown in the methodology flowchart 
(Figure 3). 

 
Figure 3. Methodology flowchart for Integrated flood and sediment management  

2. MAIN RESULTS 
 

The Vu Gia-Thu Bon River basin (VGTB-RB) in Vietnam and the Cagayan River Basin (C-RB) in the 
Philippines witnessed an extraordinary flood inundation from October to November 2020. Nine 
typhoons hit the central part of Vietnam, where VGTB-RB is located, with a prolonged heavy rain from 
6 Oct. to 1 Dec. 2020 (Linfa brought 852 mm/day, total 3300 mm from 5-20 Oct. 2020). In the 
Philippines, five typhoons occurred successively before Ulysses lashed Luzon's main island on 11-12 
November 2020, triggering extensive flooding in C-RB, as shown in Figure 4(A). One of the leading 
causes of such extreme flooding is the successive rainfall events accompanied by heavy rainfall 
separated with short intervals. As a result, the soil moisture within the catchment increased, and surface 
runoff increased. 
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Figure 4. (A) Rainfall, Inflow, outflow, and reservoir elevation during the five successive typhoons in 
2020, and (B) Magat dam operation during typhoon Ulysses 2020 

 

3. CONCLUSION 
 

Results suggest an urgent need to optimize dam pre-release to balance between required storage for 
droughts and management strategy in reducing flood impact. And, optimizing the sediment management 
is crucial to recover the reservoir volume and restore the original functions, which will be proposed.  
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ABSTRACT 
Sediment depletion in the Vietnamese Mekong Delta (VMD) has brought threats to riverbed and riverbank 

dynamics. The main objective of this research is to make a relationship between turbidity and suspended sediment 
concentration (SSCs) and to assess temporal-spatial variations of SSCs in the VMD. In this regard, the SSCs were 
measured and monitored along the Tien and Hau Rivers under the Japan-ASEAN Science, Technology, and Innovation 
Platform (JASTIP) project. Particularly, we installed three monitoring stations in main rivers and conducted two field 
surveys to collect data for assessing SSC values in the VMD. The results show that the SSCs in the delta are changeable 
seasonally with high values in the high-flow season and low values in the low-flow season. The Tien and Hau Rivers 
can be divided into two reaches. The upper reach has high SSC, decreasing seaward, whereas the lower reach has lower 
SSC, increasing seaward. 

Keywords: Sediment, VMD, erosion, turbidity, SSCs 
 
1. INTRODUCTION  

The Vietnamese Mekong Delta (VMD) is the third-largest delta worldwide with flat topography 
and a dense network of rivers and channels. Recently, the VMD is suffered from riverbank erosion, high 
sea-level rise, and a poured sediment decrease of about 74% due to dam development (Binh et al., 2020). 
Besides, sand mining contributes significantly to a decrease in the sediment budget of the VMD (Loc et al., 
2021), reducing the sediment flux from the river to the sea. Declined sediment load in the delta has caused 
erosion of the coastlines and riverbank and incision of the riverbed (Binh et al., 2021). Dams and sand 
mining may cause changes in the erosion processes. Although the understanding of the flow regime and 
sediment load in the VMD, the understanding of spatial-temporal variations of the suspended sediment in 
the VMD is limited. Therefore, this study examines sediment dynamics in the VMD using the in-situ and 
historically measured data. The specific objectives are (1) establishing the relationship between turbidity 
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and the suspended sediment concentration (SSC) and (2) examining spatiotemporal variations of the SSC 
in the delta.  

To achieve the objectives, we conducted two campaigns to install three stations that monitor 
turbidity in the VMD under the Japan-ASEAN Science, Technology, and Innovation Platform (JASTIP) 
project led by Kyoto University. In the first campaign (February 26-28, 2016), we set up two stations at Tan 
Chau and Vam Nao to measure the turbidity using an Infinity-ATU75W2-USB turbidity meter. In the 
second campaign (August 2017), we installed a turbidity station at Thot Not (about 20 km from the Can 
Tho City) (Fig 1). The measurement interval at these three stations is 30 minutes. On the other hand, we 
conducted two field surveys in August 2017 (high-flow season) and March-April in 2018 to measure the 
SSCs, river bathymetry, and flow parameters. The measurement was conducted along 570 km in the entire 
Tien and Hau Rivers and the Vam Nao diversion channel. The instrument used were an acoustic Dopper 
current profiler (ADCP) and an Infinity-ATU75W2-USB turbidity meter. In the second field survey, we 
also measured the vertical distribution of the SSCs and flow velocity using the Infinity turbidity and velocity 
meters, respectively.  

2. MAIN RESULTS 
2.1 Relationship between turbidity and suspended sediment concentration 

The samples of suspended sediment were collected at 1 m below the water surface at My Thuan 
and Mang Thit which are located about 100 and 65 km from the river mouth of the Tien River, respectively. 
We determined the grain size distribution by using Shimadzu SALD-2300 Laser Diffraction Particle Size 
Analyzer to measure particle size between 17 nm and 2,500 m. The results show that the suspended 
sediment diameters are 12.6 m at My Thuan and 6.1 m at Mang Thit. Approximately 95% of the 
suspended sediment is composed of silt and clay.  

 

Figure 1: Longitudinal SSC variations in the Tien River in the high-flow season in March-April 2018 

The data measured in the field campaigns are the turbidity with units of ppm and FTU. To 
synchronize with collected SSC data (unit is g/m3); we converted the turbidity to SSCs. To form a 
relationship between the turbidity and SSC, we collected samples during the field surveys, and then analyzed 
them in the laboratory. The relationships between turbidity and SSC are in the forms of linear correlation 
shown in equations (1) and (2) with the coefficient of determinations (R2) of 0.9925 and 0.9945, 
respectively. 

SSC (g/m3) = 1.9922 x Turbidity (ppm)-23.981   (1) 
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SSC (g/m3) = 3.0572 x Turbidity (FTU)-6.8179    (2) 

2.2 Temporal and spatial variations of SSCs 

In the VMD, the SSCs is changeable; it is usually high in the high-flow season and low in the low-
flow season. At Tan Chau in the Tien River, the recorded SSCs got the highest value of 1,300 g/m3, and its 
range was from 5 to 70 g/m3 in the low-flow season (in March-April 2018). However, in the regions of the 
turbidity maximum, the SSCs were relatively similar in both high-flow and low-flow seasons. For example, 
the SSC at Tra Vinh (in the Tien River) was 364 g/m3 (in August 2017) and 295 g/m3 (in April 2018).  

In the high-flow season, the SSCs in the Tien River were high from Tan Chau to My Thuan and 
decreased seaward, while they were low from My Thuan to the river mouth and decreased seaward. 
Similarly, the SSCs in the Hau River were high upstream of Can Tho and decreased seaward, while they 
were low from Can Tho to the river mouth and increased seaward (Fig. 1).  

3. CONCLUSION 

The sediment dynamics in the Tien and Hau Rivers are changeable reasonably. The SSCs 
are high in the high-flow season and low in the low-flow season. The VMD’s main rivers 
can be divided into two reaches: upper and lower. In the flood season, the upper reach has 
high SSC, decreasing seaward, while the lower reach has lower SSC, increasing seaward.  
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ABSTRACT  
The Vu Gia Thu Bon (VGTB) River basin is one of the main river basins in Vietnam. The rapid development of dams 
with deforestation has resulted in many environmental challenges in the VGTB basin, especially floods. Frequent 
heavy rainfall due to typhoons between September to December causes floods to occur annually. Floods have become 
an extreme natural disaster in the basin which caused many people and economic loss. For flood mapping, this study 
aims to apply the Rainfall-Runoff–Inundation (RRI) model in the VGTB River basin. The first-hand setup for two 
flood events (2017 and 2020) shows a potential result. A flood hazard map can be continually developed using the RRI 
model in the VGTB river basin. 
 
Keywords: RRI model, Discharge, Flood mapping, Vu Gia Thu Bon River basin, Vietnam 

1. INTRODUCTION  
Vietnam has been faced with various challenges related to water resources, such as transboundary water 
resources management, increasing water demand, degradation of water quality and quantity due to climate 
change, and human activities, especially flood, which has been a prevalent concern for farmers last decades. 
With over 3,200 kilometers of coastline, and 80% of the total population living along the coast, Vietnam is 
one of the most flood-prone and most affected countries by climate change (Dasgupta S. et al., 2007). 
Besides, human activities, such as watershed deforestation and construction of hydroelectric power plants, 
have the most visible impact on Vietnam's water quality and quantity. One of the most crucial issues from 
these human activities is extreme flood events, leading to poor water quality or inundation in the downstream 
areas. 
We focus our study on the VGTB River basins located in Central, one of Vietnam's largest internal drainage 
systems. VGTB river basin covers 10,000 km2 (Firoz. et al., 2018); this river system is formed by two major 
rivers of the Vu Gia and the Thu Bon (Vu Gia river is 204 km long, Thu Bon river is 152 km long). Most 
of the VGTB River basin area is situated in Quang Nam province and Da Nang city, and a very small 
proportion is located in Kon Tum province. It is characterized by topography from 0 m to 2598 m elevation 
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(Viet et al., 2017). Almost half of the land area is covered by forest, followed by agricultural land, urban 
and water. Within the VGTB River basin, 18 multipurpose dams (MOITb, 2015) are used for water supply, 
irrigation, and hydropower. Several observation stations within the VGTB River basin include two water 
discharge stations and 15 rainfall stations, as shown in Figure 2. The VGTB river basin is greatly decisive 
to the livelihood of residents concerning water, food, energy, cultural, and recreational activities. The 
rainfall occurs primarily in the four months of the wet season (from September to December); the heavy 
rain concentrates from October to December leads to an increase in flood risk in the catchment. At the same 
time, little rain occurs during the long dry season, which spans from February to August and often causes 
water shortages (MOITa, 2015). The recurrence of floods during the rainy season poses many severe 
challenges to local decision-makers. 
We attempt to create a flood risk map to help managers and citizens better understand the flood situation 
in the VGTB River basin. 
RRI model is a two-dimensional model used for rainfall-runoff and inundation simulation. RRI model can 
simulate flood extent using different surface and sub-surface flow conditions. RRI also deals with the lateral 
subsurface flow in mountainous areas and infiltration in flat regions separately. For a detailed explanation 
of RRI, refer to the literature (Sayama et al., 2012). Data used as input is MERIT Digital Elevation Model 
(MERIT DEM). It represents the terrain elevations at a 3sec resolution (~90m at the equator). Rainfall and 
river discharge data were collected from the rainfall stations and hydrology stations within the VGTB river 
basin. 
 

 

 

Figure 1. Observed and simulated discharge at Nong Son station in VGTB river basin a) calibration 
period- flood event 2017 and b) validation period- flood event 2020 
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2. MAIN RESULTS 
RRI model was applied for daily discharge (m3/sec) estimation in the Nong Son station. Figure 1a) and 1b) 
show the results of the daily discharge estimation for flood events 2017 (calibration period) and 2020 
(validation period) at Nong Son station, respectively. Model evaluation for the discharge by Nash–Sutcliffe 
model efficiency coefficient (NSE), the NSE value shows the acceptable performance of RRI in the VGTB 
River basin. The initial results of the simulated river discharge point out that the RRI model has great 
potential in estimating the released flow for the study area. RRI simulation results showed the flood 
inundation extent closely to the actual flood event 2020, as shown in Figure 2. The green points displayed 
in Figure 2 represent measured post- flood marks collected from our co-author's field trip. Correlation 
between 47 measured flood mark points and water depth by RRI was calculated for this flood event (Figure 

3). The coefficient of determination R2 shows how strong of a linear relationship is. The value of 0.503 
presents a good relationship in simulating water depth by the RRI model compared to the actual value. 

3. CONCLUSION 
This study shows the potential of the RRI model in estimating the river discharge in the VGTB River basin. 
However, there is still a need to improve the model in terms of parameter setting and reservoir adding to 
achieve higher model accuracy. Therefore, RRI can simulate the flood hazard map in the VGTB river basin.  

  

Figure 2. Correlation between Actual Flood mark 
and Water depth by RRI for flood event 
2020 in VGTB river basin (m) 

Figure 3. Correlation between Actual 
Flood mark and Water depth 
by RRI for flood event 2020 
in VGTB river basin (m) 
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Abstract. Understanding changes in sediment dynamics can significantly impact the 

sustainable development of the world. Modelling suspended sediment plays a crucial 

role because it allows decision makers and managers to formulate solutions that can 

avert the blockage of the sediments in a watershed. Estimates of suspended sediment is 

useful for global ecosystem service assessments and identify vulnerable aspects under 

climate change. This research has proposed using the Long Short-Term Memory 

(LSTM) networks to forecast suspended sediment concentration (SSC) at the Vu Gia-

Thu Bon catchment, Vietnam. Inputs include the monthly runoff data and the monthly 

suspended sediment concentration at the Thanh My station. The outputs are predicted 

suspended sediment concentrations compared with the observed data. In the training 

and testing sets, monthly data from 1978 to 2005 and data from 2006 to 2019 are used. 

The research evaluates many scenarios with different hyperparameters to find the 

optimal LSTM model for the catchment. The comparison shows that the LSTM model 

has the ability to predict SSC time series at the catchment. 

1.   Introduction  

High sediment delivery ratios can lead to significant flood risks because sedimentation can reduce the 

cross sections [1]. Sediment transport is a nonlinear and complicated environmental phenomenon. The 

topic has attracted many researchers. There is a wide range of models adopted to simulate and predict 

river sediment dynamics, such as empirical, numerical and physically-based models. The empirical 

studies have been successfully applied to estimate sediment transport [2]. However, the empirical studies 

are expensive in comparison with other approaches. The empirical equations based on the input 

parameters with innate errors can lead to uncertainties in the results [3]. In addition, the equations require  

essential information about the flow and sediment characteristics to develop sediment load relations [4]. 

Because there is a wide range of flow conditions and dependent parameters of sediment characteristics 

at different points, the equations are not unique. Moreover, they adopt the simple linear structure which 

is not enough to model the nonlinear and complex processes of sediment load [5]. Therefore, empirical 

models do not often have the ability to predict SSL accurately. In terms of the theoretical governing 

equation, there are difficulties in obtaining knowledge of the overall processes because it uses the large 
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range of obscure parameters [6]. Physically-based models have been widely applied to estimate erosion 

and sediment load across the world [7]. However, they require many variables with spatial and temporal 

data. It is difficult, even impossible, to collect them in many areas.  

In recent decades, numerous data driven models have been widely introduced for suspended sediment 

modelling, such as LSTM models. The data driven models have accurate results in modelling suspended 

sediment, although they are simplicity and do not require much prior knowledge. The extract approaches 

can identify the data patterns from the historical data to predict future events [8]. They can reduce the 

complexity of the processes because they do not require many algorithms and theory. 

In this study, the LSTM models are adopted to estimate suspended sediment concentration (SSC) at 

Vu Gia – Thu Bon catchment, Vietnam. 

2.   Theoretical review 

 

The LSTM network, a kind of Recurrent Neural Network (RNN), can overcome the problem of 

vanishing gradients of RNN models. LSTM is applied in many topics, from prediction to face detection. 

LSTM can remember prior important things and forget unnecessary information [9]. A basic LSTM 

model consists of three gates: an input gate, an output gate and a forget gate. The gates have different 

weights. 

 
  

Figure 1. LSTM cell. 

In the forget gate, ft, input, ht-1 and xt, are passed or forgot. Output of this gate being from 0 to 1 is 

computed as 

𝑓𝑡 =  𝜎(𝑊𝑡 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖]         (1) 

where σ is the sigmoid function, wt is the weight value, ht-1 is output of the module at the last time (t-1), 

xt is input at time t, and bt is the bias value. When ft is 1, the module completely stores the whole 

information. In contrast, when ft is 0, the module completely forgets the received information. 

The input gate controls what information is transferred to the cell state. The output is determined by 

using the following equations: 

𝑖𝑡 . 𝐶̃𝑡 =  𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) . 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)     (2) 

 𝐶𝑡 = 𝑓𝑡.𝐶𝑡−1+𝑖𝑡.𝐶𝑡                                                (3) 

where Ct and Ct-1 are the cell states at time t and t-1 respectively. 

The output gate controls the data flow in the cell state transferred to the next step. The output value, ht, 

is computed as 

ℎ𝑡 =  𝑂𝑖tanh (𝐶𝑡)                   (4) 

𝑂𝑡 =  𝜎(𝑊0[ℎ𝑡−1, 𝑥𝑡] + 𝑏0]      (5) 
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where bo is the bias value and wo is the weight value at the output gate. 

 

3.   Study area 

The Thu Bon river with a drainage basin of over 10,000 km2 is the main river in Quang Nam province 

and Da Nang city. The flood season lasts 3 months and contribute 80% of the annual flow. The dry 

season lasts 9 months but makes up only 20% of the annual flow. In the flood season, the river deliver 

sediment to the coast. The frequent landslides in the region usually occur, the river carries the high 

suspended sediment load. It increases suspended sediment amount. Sediment concentration can affect 

water quality, the plants and animals living in the river. Sediments can settle and develop sand bars on 

the river or stream bed. 

 
Figure 2. Vu Gia Thu Bon catchment. 

 

 

4.   Model development 

The proposed model adopts uninterrupted time series data, including monthly discharge data (Q) and 

monthly suspended sediment concentration (SSC) at Thanh My for training and testing processes. 

In the training and testing sets, monthly data from 1978 to 2005 (27 years) and data from 2006 to 2019 

(16 years) are used. The main reason why the first twenty-nine years are assigned to the training set is 

that this period has the highest values. 

Tables 1 shows the input combinations. They allow the study to predict the SSC value in one month 

ahead at time t (SSCt).  
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Table 1. The input combinations 

Model The input combinations  

S1 SSCt - 1  

SQ1 SSCt - 1, Qt - 1  

S2 SSCt - 1, SSCt - 2  

SQ2 SSCt - 1, SSCt - 2, Qt - 1, Qt - 2  

S3 SSCt - 1, SSCt - 2, SSCt - 3  

SQ3 SSCt - 1, SSCt - 2, SSCt - 3, Qt - 1, Qt - 2, Qt - 3  

 

The LSTM models, including one input layer, hidden layers and one output 

layer, are used to predict SSC.  The Relu activation and the linear activation are used in the hidden layer 

and the output layer respectively.  

The numbers of nodes in the input and output layers are equal to the number of input and output variables 

of a proposed model. The number of nodes in the hidden layer is an important consideration in training 

state. Fewer nodes within a hidden layer cannot allow the LSTM models to capture the intricate 

relationships between indicator parameters and the output. Too many hidden layer nodes can lead to 

overtraining. 

The selection of parameters, such as the number of batch-size, epoches and hidden layers and nodes in 

the hidden layer (in training process) is based on the grid search (GS) method. In the GS processing, the 

gird range of batch-size is between 1 and 20 and a grid step is 1. The range of the number of epoch is 

from 1 to 1000. The gird range of nodes is from 2 to 10 with a grid step of 1. An early-stopping set 

allows us to select the optimal epochs. The early-stopping is set as 20 which means the algorithm will 

stop when there is no improvement within 20 steps. 

The optimization algorithm is Adam presented by Diederik Kingma [10]. This algorithm is widely 

applied to many applications, specifically in training deep neural networks. Adam is a replacement for 

stochastic gradient descent for turning the weights iteratively based on training data. Adam helps the 

model increase computational efficiency and require little memory. To protect the LSTM model from 

overfitting, Dropout regularization is used in this study. 

Table 2. The proposed MLP and LSTM models 

Items Details 

Input variables Monthly SSC and Q in Thanh My station 

Output variable Monthly SSC in Thanh My station 

Training  

parameters 

Number of input neurons: from 1 to 6 

Number of hidden neurons: variety 

Number of hidden layer: 1 or 2 

Learning rate 0.01 

Transfer function of hidden layer: Relu 

Transfer function of output layer: Linear 

Training algorithm: Adam 
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The number of epochs: variety 

Early stopping: yes 

The length of timesteps: 1, 2 and 3 

 

 

The Nash–Sutcliffe model efficiency coefficient (NSE), Root Mean Squared Error (RMSE) and Mean 

Absolute Error (MAE) are the model evaluation criteria. The model's efficiency can be shown by the 

NSE. NSE is a number that ranges from -infinity to one. When NSE equals one, the modelled and actual 

data are a perfect match. The RMSE is a statistic that shows how prediction errors cluster around the 

line of best fit, or the discrepancies between predicted and observed values. The value of the RMSD is 

never negative. Theoretically, if the RMSD number is 0, the data is perfectly fit. In statistics, MAE is a 

measure of errors between two continuous variables. The lower the MAE number, the better the model 

fits. 

𝑁𝑆𝐸 =  1 −
∑ (𝑦̂𝑡−𝑦𝑡)𝑛

𝑖=1

∑ (𝑦̂𝑡− 𝑦̅)𝑛
𝑖=1

                    (6) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦̂𝑡 − 𝑦𝑡)𝑛

𝑖=1                (7) 

MAE =  
∑ |yt−ŷt|n

1

n
                                 (8) 

Where 𝑦̂𝑡is the observed discharge, 𝑦𝑡 is the modeled discharge, and  𝑦̅𝑡 is the mean of observed 

discharge. 

5.   Model results 

Table 3 displays the results of the LSTM models comprising of hidden neuron, epochs, and 

batch_size change. In the training of Thanh My station, the SQ2 model produce the best MAE, RMSE 

and NSE (28.018, 48.786 and 0.407, respectively). In the testing phases, the SQ2 also obtains the best 

RMSE, NSE and MAE values. Therefore, the SQ2 model is selected for the catchment. 

 

Table 3. Performance of the LSTM models 

 

Station model Model parameters Training Testing  

MAE  RMSE 

 

NSE MAE  RMSE NSE 

Thanh 

My 

 

 

 

 

 

 

  

S1 Structure: 1-5-4-1 

Epoch:30 

Batch_size: 10 

5-4 (e30) 

34.038 52.736 

  

0.303 92.405 133.897 

  

0.272 

SQ1 Structure: 2-4-3-1 

Epoch: 75 

Batch_size: 10 

30.550 51.645 

  

0.332 86.616 125.784 

  

0.358 

S2 Structure: 2-2-3-1 

Epoch: 50 

34.080 55.887 

  

0.222 99.266 143.480 

  

0.170 
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Batch_size: 10 

SQ2 Structure: 4-5-3-1 

Epoch: 50 

Batch_size: 10 

28.789 48.786 

  

0.407 84.353 121.312 0.402 

S3 Structure: 3-5-3-1 

Epoch: 50 

Batch_size: 8 

31.756 51.990 

 

0.326 96.368 137.224 

 

0.243 

SQ3 Structure: 6-14-4-

1 

Epoch: 60 

Batch_size: 10 

28.018 49.229  0.395 85.000 123.596 85.000 

 

 
Figure 3. Comparison between the modelled and observed SSC for testing period (the SQ2 

model) 
 

Figure 3 shows the relationship between the modelled SSC and the observed data from 1978 to 2007 in 

testing period based on the SQ2 model. There is a similar trend between the observed data and the 

modelled data. The LSTM model has the ability to produce the same pattern as the observation. 

However, the LSTM model sometimes underestimates the SSC. The reason for this issue could be flood 

discharges in the upstream reservoirs at that time. Therefore, the flooding flow becomes more 

extraordinary. 

 

6.   Conclusion 
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This research introduces and develops the LSTM model to generate SSC. The six models are 

estimated to select the suitable one for the catchment. The model evaluation criteria are MEA, RMSE 

and NSE. The performances of all the scenarios are good and there are no significant differences in the 

results between the scenarios. The scenario SQ2 is slightly better than others and was selected to test the 

model in the testing dataset that the model would face certainty. 

The LSTM model can remember, update and also forget the information. Therefore, it can effectively 

solve problems with time series, for example SSC forecasting. Moreover, this method requires limited 

input data, only SSC and discharge, to produce accurate results. This is one advantage because there is 

not enough accurate data, such as topographical and hydrological information, in this catchment. 

Although there are discrepancies between the modelled data and observation, the model has the ability 

to generate quite accurate SSC. Therefore, the LSTM model is an effective approach to forecast 

discharge in the Vu Gia-Thu Bon catchment and is useful for giving early warning. 
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ABSTRACT  
The role of water security is the importance of sustainable development in a country. This study used the water stress 
index (WSI) to evaluate the status of water resources and water exploitation in the Vu Gia - Thu Bon river basin. In 
the study, the Vu Gia - Thu Bon river basin was divided into 9 areas to calculate the water stress index (WSI) through 
the following calculation: The water availability is calculated by the simulation software MIKE SHE; Demand water 
(domestic, industry, agriculture); Environmental water requirement (EWR) to maintain environmental stability of the 
river. 
The findings have shown that 1) There is WSI differences beetwen upper and lower Vu Gia Thu Bon; 2) In the 
downstream areas, water scarcity becomes more serious than in the middle and upstream areas, especially, the 
exploitation area to supply water for domestic and industry in Da Nang city. 
Keywords: Water stress index; Environmental water requirement; Water availability; Demand water; Vu Gia - 
Thu Bon river basin. 
1. INTRODUCTION  

The total annual surface water is around 830-840 billion m3. Of this, 310-315 billion cubic meters per 
year is generated within the territory of Viet Nam, and accounts for 37%; while the volume of water runoff 
into the country is about 520-525 billion cubic meters per year, equal to 63%. Water resources are not evenly 
distributed over different regions and by different times of the year (The average volume of water in 3-5 
months in the flood season makes up 70-80% of the total volume, while the 7-9 months of the dry season 
receives 20-30% of the year’s water quantity). (Ministry of Natural Resources and Environment (MoNRE), 
2006) 

In Da Nang city, the demands for water from all sectors of the economy are increasing with an 
exploitation capacity of around 300.000 m3/day, and water demand grew 8% per year. According to the 
master plan on the water supply to 2030, vision to 2050, 100% of the urban population will have access to 
clean water (180 L/cap/day), 100% of the urban population with 150 L/cap/day [Da Nang, 2019]. The 
volume of water for municipal supply depends mostly on the amount of Vu Gia Thu Bon basin (97%) which 
is under a separate jurisdiction (Quang Nam Province) and is subject to strong competition from other water 
uses.  

mailto:mttduong@dut.udn.vn
mailto:vnduong@dut.udn.vn
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With an expected reduction in dry season flows from the Song Vu Gia, the existing water supply intake 
at the Cau Do water treatment plant (WTP - Da Nang city) would be more vulnerable to salinity intrusion 
and increased concentration of pollutants as a result of the river’s reduced flushing capacity. The early onset 

of the dry season has forced Da Nang Water Company (DAWACO) to pump water from An Trach due to 
salinity intrusion in the Vu Gia River, in turn, attributed to inadequate freshwater flows from the Vu Gia 
River (The salinity of water in WTP is 1119 mg/L on March 2nd, 2021 -DAWACO). 

 Da Nang features continuously strong and stable economic growth, ever-increasing living standards of 
its citizens. Da Nang’s water demand is increasing rapidly, but available sources of water are very limited. 

With current and future challenges for water resources management, it is necessary to build the database in 
water sustainability assessment. 

Metrics of water scarcity and stress have evolved over the years from simple to complex threshold 
indicators. Water scarcity can broadly be described as a shortage in the availability of renewable freshwater 
relative to demand (Damkjaer & Taylor, 2017). It is defined as the fraction of the total annual runoff 
available for human use. Water scarcity expresses insufficient freshwater resources to meet the human and 
environmental demands of a given area.  

Water stress index (WSI) is typically defined as the relationship between total water use in domestic, 
industry, agriculture, and water availability. According to the map of water stress by the World Resources 
Institute, 17 countries currently face "extremely high" levels of water stress, in which, 12 countries belong 
to the Middle East and North Africa region. The studies show that climate change probably complicates the 
global water crisis. 

There are many approaches to measure the WSI of a watershed. To assess the suitability of water 
resources, besides the evaluation of the water supply capacity and water demand, the required amount of 
water to maintain an ecosystem also needs to be considered. The relationship of the renewable water reserves 
(WR), total water use (WU), and the environmental water requirement (EWR) in that region are denoted by 
the water stress indicator (WSI) (Smakhtin et al., 2004). 

𝑊𝑆𝐼 = 
EWRWR

WU

−

 
WSI: Water stress index 
WU: The water use (WU),  
WR: water resource (WR)  
EWR: Environmental Water Requirement 

If: 
WSI > 1: Overexploited (current water use is tapping into 
EWR)—environmentally water scarce basins. 
0,6 ≤ WSI < 1: Heavily exploited 
0,3 ≤ WSI < 0,6: Moderately exploited.  
WSI < 0,3: Slightly exploited. 

Research objectives 

Water supply capacity assessment for domestic, industry, and agriculture of Vu Gia-Thu Bon river 
basin. 

Calculating the water stress index and developing to map water stress index of the downstream region 
of the Vu Gia – Thu Bon river system. 

  Proposing some possible solutions to ensure water security for Danang City.  
Methodology  

Literature review and inheritance methods 

   Review of related theory aims to inherited researches at home and abroad that related to research contents. 
It can also help to provide an overview of areas in which the research is disparate and interdisciplinary a 

https://www.britannica.com/science/water-supply
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literature review is an excellent way of synthesizing research findings to show evidence on a meta-level and 
to uncover areas in which more research is needed, which is a critical component of creating theoretical 
frameworks and building conceptual models. 
Methods of data collection and analysis  

     Data collection is a process of collecting information from all the relevant sources: water resources 
availability and demand, rainfall, weather… 
Model methodology 

     The MIKE SHE Software will be applied for calculation. 

2. MAIN RESULTS 
 15 regions of Vu Gia-Thu Bon river basin: 
 

No. Areas Area (km
2
) 

Region 1 (KV1) Upper Vu Gia 2411.61 
Region 2 (KV2) Cai River basin 865.21 
Region 3 (KV3) Dak Mi River basin 625.90 
Region 4 (KV4) Tranh 2 River basin 1062.69 
Region 5 (KV5) Tranh 3 River basin 1641.08 
Region 6 (KV6) Middle Thu Bon 725.11 
Region 7 (KV7) Middle Vu Gia 314.36 
Region 8 (KV8) Con River basin 616.88 
Region 9 (KV9) Lower 1 Thu Bon 332.90 
Region 10 (KV10) Lower 2 Thu Bon 186.47 
Region 11 (KV11) Quang Hue River basin 28.28 
Region 12 (KV12) Yen River basin 121.19 
Region 13 (KV13) Tuy Loan River basin 102.81 
Region 14 (KV14) Cam Le River basin 122.00 
Region 15 (KV15) Lower Vu Gia 189.65 

 
 

https://www.open.edu/openlearncreate/mod/resource/view.php?id=52658
https://www.open.edu/openlearncreate/mod/resource/view.php?id=52658
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Figure 1: Map of dividing calculation regions on Vu Gia - Thu Bon River basin 

The WSI differs dramatically within in other regions. In the upper arears, where WSI < 0.3 or 0.3 < 
WSI < 0.6, indicating withdrawals which are environmentally safe, moderately exploited. While, the 
situations of environmentally water scarcity are occurring primarily in the lower Vu Gia - Thu Bon river 
basin, especially in Da Nang city. 

3. CONCLUSION 

The results of the research can be considered as one of the water resources management tools in the Vu 
Gia-Thu Bon river basin in general and Danang in particular. The water stress index is the basin of water 

supply planning in Danang City. Scarcity index is one technical numerical method developed to assist the 
parties to allocate the shared water resources and to assist in recovering the water gaps. 

 
Acknowledgment: This work was supported by Vingroup scholarship program for Ph.D. student, 2021. 
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TURBULENT FLOW FIELD IN VEGETATION, 

FROM EXPERIMENT TO NUMERICAL MODEL  
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ABSTRACT  
The interaction between hydrodynamics, vegetation, and morphodynamics is the crux of nature-based solutions. The 
knowledge of these interaction processes is still in its infancy. Fundamental studies on this topic are usually based 
on small-scale laboratory experiments with a simple model of vegetation. Whether or not knowledge obtained can 
be applied for rivers, channels, and estuaries with natural scales has not yet been determined. Numerical models 
provide an effective tool to fill this knowledge gap. Numerical simulations were successfully captured the large 
coherent structures at the interface of a porous layer. Nevertheless, from a civil engineering perspective, utilizing 
detailed models on a large scale, e.g., river channels, coasts, or estuaries, is computationally costly. This study 
introduces some recent findings on this topic. A step-by-step approach including experiments, the analytical model, 
and numerical techniques was presented. The results focus on the presence of a shallow flow field and the transverse 
exchange of mass and momentum at the edge of the vegetation area. 
 
Keywords: Natural-based solution; Vegetation; Flow Field; Physical model; Numerical Model. 

1. INTRODUCTION 
 
Vegetation provides effective protective tools for rivers, estuarine and coastal regions. The roots, stems, and 
canopy system of vegetation divert and retard the flow field within and surrounding vegetation region 
(Truong et al., 2019). In addition, mangroves and saltmarshes absorb external forces such as waves and 
currents (Phan et al., 2020). As a result, sediment tends to be deposited in and around the vegetation region 
(Vargas Luna et al., 2015). The sediment deposited then may have large influences on the shallow flow field 
and the growth conditions of the vegetation (Truong et al., 2017). These mutual interactions between 
ecological area (vegetation), hydrodynamic conditions (shallow flow field), and morphological conditions 
(sediment transport) are the crux of nature-based solutions (NbS).  

Many studies have been published in this context, focusing on understanding the hydrodynamic 
processes in and around the forest and the defensive role of vegetation in coastal and estuarine regions. For 
example, Truong et al., 2017 and Phan et al., 2015 observed the development of mangroves along the 
Mekong Delta estuaries and Mekong Deltaic Coast and linked the degradation of those ecological systems 
to the squeeze phenomenon. It is hypothesized that the ecological system needs certain accommodation 
spaces for its cyclic evolution under the stresses of human construction and increased water levels induced 
by sea-level rises. From a hydrodynamic perspective, this hypothesis was clarified by the penetration of 

mailto:truonghongson@tlu.edu.vn
mailto:phankhanhlinh@tlu.edu.vn
mailto:phamhongnga@tlu.edu.vn
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large turbulent flow structures in the mixing layer into the vegetation region (Truong et al., 2019). These 
turbulent structures caused by the Kelvin-Helmholtz instability are large compared to the water depths and 
are termed as large horizontal coherent structures (LHCSs). 

The presence of turbulent structures at the interface of the vegetation region is recognized in a small-
scale flume (Truong et al., 2019). As the LHCSs move along the vegetation-open channel interface, they 
generate cycloid flow events, including sweeps, ejections, the stagnant and reverse flows (Truong et al., 
2019). These flow events split the shallow flow field into different regions associated with different length 
scales. These flow events have large influences on the transverse exchange of momentum in and around the 
vegetation region. It is suggested that Reynolds Shear stresses (RSs) induced by these LHCSs contribute 
more than 90% to the total turbulent shear stress (Truong & Uijttewaal 2019). In other words, these turbulent 
structures contribute up to 90% of the amount of transverse momentum exchange between the vegetation 
region and the open channel areas.  

In order to model this phenomenon using the Unsteady Reynolds-Averaged Navier-Stokes 
(URANS) models, a new momentum exchange model was developed and verified using different data sets. 
This viscosity model could be used as a turbulent model in a numerical simulation to enhance the capability 
of the simulations. 

2. MAIN RESULTS 
 

A new hybrid eddy viscosity model was proposed by Truong & Uijttewaal 2019. The total eddy viscosity 
model can be determined according to the equations: 

𝜐� =

{
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In which 𝛼 is a constant of the order of 0.1; �𝑚 and �(𝑦) is the mean water depth and local water depth 
respectively; 𝐶�  is constant of proportionality and 𝐶𝑑  is the drag coefficient of a single stem; � is a 
proportionality constant, and � is the mixing length. 
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Figure 1. The pattern of the LHCSs is captured in the numerical model (vorticity fields) (left panel) and 
the small-scale physical model (right panel). 

 
One of the most difficult tasks of utilizing a depth-averaged two-dimensional in the horizontal 

model (2DH model) is to provide an adequate turbulent viscosity model. This turbulent closure model needs 
to represent horizontal mixing or bed-generated turbulence. After demonstrating the hybrid eddy viscosity 
model's applicability (Truong & Uijttewaal 2019), it can be imposed in a numerical model of compound 
channels to enhance the numerical results. The numerical model was run first with eddy viscosity calculated 
from Elder formulations. Based on the simulation results, the parameters required to determine the hybrid 
eddy viscosity model, such as shear-layer width, vegetation drag, and velocity gradient, can be determined. 
This new eddy viscosity model was then imposed into the numerical model to improve the simulation 
results. The figure above illustrates the comparison between the numerical model and the physical model 
regarding the presence of the LHCSs.  

3. CONCLUSION 
 
This paper summarised some new findings in the flow in and around the vegetation region. The presence 
of large vortex structures moving along the vegetation edge can be observed. These structures generate a 
cyclic flow field in which different flow events. These flow events, especially sweeps and ejections, 
contribute more than 90% to the transverse exchange of mass and momentum between the vegetation and 
the adjacent open channels.  In order to capture this phenomenon in the 2DH model, a new hybrid eddy 
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viscosity was developed and then prescribed into the numerical model. The model was validated with 
different data sets and can improve the simulation results. Future works will focus on validating this 
momentum exchange model on large-scale experiments, natural river channels, and the morphological of 
the vegetated channel. 
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Session 2: Hydrological Modelling and Sediment 
Management-B  

9 16:00 – 16:15 Coffee Break 

10 16:15 – 17:30 Session 3: Artificial Intelligence for Hydrological Application 

11 18:00 – 20:00 Dinner  

2nd day of FSMaRT2022 

(Monday, 19th of December) 

12 

09:00 – 09.15 
Keynote #3: Prof. Orlando F. Balderama, Isabela State 
University, Philippines 

09:15 – 09.30 
Keynote #4: Prof. Hung The Nguyen, the University of 
Science and Technology in Danang, Viet Nam 

13 09:30 – 09.45 Coffee Break 

14 09:45 – 11.15 Session 4: Flood Risk Assessment 

15 11:15 – 12.00 Poster Program: Session B 

16 12:00 – 13.00 Lunch 

17 13:00 – 14.30 
Session 5: Remote Sensing and GIS for Flood and Water 
Security  

18 14:30 – 16.00 
Session 6: Hydrological Modelling and Sediment 
Management-C 

19 16:00 – 17.00 Session 7: Climate Change and Sustainability  

20 17:00 – 17.30 Presentation of Awards and Closing Remarks 

21 18:30 – 21.00 Gala Dinner at Hotel 
 

 

 

 

 

 

 

 

 



 
 

3rd day of FSMaRT2022 

(Tuesday, 20th of December) 

Field Excursion 

08.00 1st Meeting Place at Hotel Lobby 

08.15 2nd Meeting Place at University of Science and Technology 

09:15 Departure from University of Science and Technology by bus  

11:15 Arrival at A Vuong Hydropower at Thanh My Town, Nam 
Giang District, Quang Nam 

12:30 Lunch 

13:00 Departure from A Vuong Hydropower 

14:30 Arrival at CuaDai river mouth in Cam An ward, Hoi An city, 
Quang Nam province 

16:45 – 18:30 Visit Hoi An Ancient town, Japanese bridge, Tan Ky ancient 
house, Phuc Kien Assembly hall, Museum of Trade Ceramics, 
CamPho communal house, etc 

18:30  Dinner 

19:00  Return to Danang city 

20:00 Arrival at Danang city 
  

 



 
 

Detailed Program of 1st FSMaRT 2022 
18th December 2022 (Sunday), at the Conference Hall of F Building 

08:30 – 09:00           Registration 

Opening Sessions 

Chaired by: Prof. The Hung  Nguyen 

Time Title of presentation Presenter 

09:00 – 09:05 Welcome Message   
Assoc. Prof. Duong Vo Ngoc, (Da 
Nang University of Science and 
Technology, Vietnam) 

09:05 – 09:10 Opening Speech 
Mr. Suzuki Takashi (JICA 
representative in Vietnam) 

09:10 – 09:15 Opening Speech 
Mr. Nobuyuki Ichihara (Director 
International Affairs Division, Japan 
Water Agency) 

09:15 – 09:20 Opening Speech  Prof. Ricmar P. Aquino (President of 
Isabela State University, Philippines) 

09:20 – 09:25 Opening Speech Prof. Sameh A. Kantoush (DPRI, 
Kyoto University, Japan) 

09:25 – 09:30 Opening Speech  Prof. Thai Nguyen Canh (Thuyloi 
University, Vietnam) 

09:30 – 09:35 Special Remarks 

Assoc. Prof. Doan Quang Vinh, (The 
Rector of the Da Nang University of 
Science and Technology, Vietnam) 

09:35 – 09:50 

Final Report on Research 
Achievements of Integrated 
Flood and Sediment 
Management (FSMaRT)  

Prof. Sameh A. Kantoush (DPRI, 
Kyoto University, Japan) 

09:50 – 10:00 MOU Signature between Isabela State University and Da Nang University 
of Science and Technology 

10:00 – 10:15 Group Photo and Coffee Break 

Special Session 

Chaired by: Prof. Sameh A. Kantoush 

Time Title of presentation Presenter 

10:15 – 10:30 1#: Keynote Speaker Dr. Nguyen Van Hoang (Vietnam 

disaster management authority) 

10:30 – 10:45 2#: Keynote Speaker Prof. Tetsuya Sumi (DPRI, Kyoto 

University, Japan) 

10:45 – 11.30 Open Session for Plenary Discussion 

 



 
 

 
Poster Program – Session A B (11.30 -12.00) 

Chaired by: Dr. Son Truong Hong 

Note: Allocated time for Poster Presentations: 03 min. talk + 02 min. discussion 

Poster Code Title  First Author/Presenter 

A1 
Impact assessment of Son Tra 
wastewater treatment to the coast 
of Danang city, Vietnam 

Nguyen Phuoc Quy An 

A2 

Application of Rainfall-Runoff 
Inundation model to forecast 
Magat dam inflow and water 
elevation 

Arlen Alejandro 

A3 

Ceres – A Citizen Science 
Approach Monitoring Reservoir 
Operation from space for poorly 
gauged reservoirs: A case study 
in Vu Gia Thu Bon. 

Tien Du 

A4 
Vulnerability assessment of 
riverbank erosion: a case study 
of Vietnamese Mekong Delta 

Menna Ahmed 

A5 
Hydropeaking process in Vu Gia 
Thu Bon River basin: Causes, 
consequences, and main driven 

Binh Quang Nguyen 

A6 Reviewing on flood simulation 
using hydrological models Son Nguyen Thien 

A7 

Monitoring the shoreline change 
in the coastal area of Da Nang 
City, Vietnam using time-series 
satellite imageries and Google 
Earth Engine platform 

Van An Nguyen 

A8 

Evaluation of urbanization and 
climate change on urban water 
drainage system in central of 
Vietnam 

Duc Phuoc Vo 

12:00 – 13:00 Extension of Poster Session with Lunch 
 
 
 
 
 
 
 
 

 



 
 

1st Session on Hydrological Modelling and Sediment Management – A 

Chaired by: Prof. Mohamed Saber 

Note: Allocated time for Oral Presentations: 15 min. talk  

Time Title of presentation First Author/Presenter 

13:00– 13:15 
Comparison of 2D and 3D 
modelling for T-junction channel 
with different turbulence model 

Mohamad Faizal Ahmad 

13:15 – 13:30 

Sediment Nutrient Fluxes and 
Links to Harmful Algal Blooms 
in a Eutrophic Lake using 
Diagenetic Modeling 

Phuong Doan 

13:30 – 13:45 

Riverbank erosion assesment 
usung Mike 21C modeling in Vu 
gia – Thu Bon river (Quang Nam 
provincical region) 

Tuan An Bui 

13:45– 14:00 
Overview of reservoir 
sedimentation in Batu Dam, 
Selangor, Malaysia 

Siti Saimah Abdul Rahman 

14:00 – 14:15 
Dynamic of Salinity Intrusion in 
CoChien and CungHau branches 
of Mekong estuaries 

Nguyen Phuong Mai 

14:15 – 14:30 Open Discussion (Q&A) 

2nd Session on Hydrological Modelling and Sediment Management - B 

Chaired by: Dr. Doan Van Binh 

Note: Allocated time for Oral Presentations: 15 min. talk 
Time Title of presentation First Author/Presenter 

14:30 – 14:45 

Impacts of Reservoirs on 
Sediment concentration in the 
transboundary Srepok River 
Basin, Vietnam 

Thao Bui Thi Phuong 

14:45 – 15:00 

Integrated flood and sediment 
management in river basins for 
sustainable development: The 
case of Cagayan River Basin 

Lanie Alejo 

15:00 – 15:15 

A conceptual approach to study 
influences of river sand mining 
on the depth-averaged velocity 
in vegetated compound channels 

Son Hong Truong 

15:15 – 15:30 

Optimization of Magat dam 
operation rule for flood risk 
management in the Cagayan 
river basin 

Hikaru Goto 

  

 



 
 

15:30 – 15:45 
Magat Dam science-based 
initiatives for long-term flood 
and sediment management 

Carlo Ablan 

15:45 – 16:00 Open Discussion (Q&A) 

16.00 – 16.15 Coffee Break  

3rd Session on Artificial Intelligence for Hydrological Application 

Chaired by Dr. Pham Hong Nga 

Note: Allocated time for Oral Presentations: 15 min. talk 

Time Title of presentation First Author/Presenter 

16.15 – 16.30 
Water level prediction model of 
Kien Giang river based on 
regression techniques 

Quang Chieu Ta 

16.30 – 16.45 
Water level prediction of Kien 
Giang river using deep learning 
models 

Trung Hieu Trieu 

16.45 – 17.00 

A real-time flood forecasting 
hybrid machine learning 
hydrological model for Krong 
H’nang hydropower reservoir 

Phuoc Sinh Nguyen 

17.00 – 17.15 

Machine Learning Techniques 
and hydrological Modeling for 
Flood Susceptibility and 
Inundation Mapping: Case study 
VGTB River Basin, Vietnam 

Mohamed Saber 

17.15 -17.30  Open Discussion (Q&A) 

18.00 – 20.00 1st Day Dinner   
 

 

19th December 2022 (Monday), at the Conference Hall of F Building 

Special Session 

Chaired by: Prof. Tetsuya Sumi 

Time Title of presentation Presenter 

09:00 – 09:15 3#: Keynote Speaker Prof. Orlando F. Balderama (Isabela 

State University, Philippines) 

09:15 – 09:30 4#: Keynote Speaker 
Prof. Hung The Nguyen (University 

of Science and Technology in Danang, 

Vietnam) 

09.30 – 09.45 Coffee Break 

 
 
 

 



 
 

4th Session on Flood Risk Assessment 

 Chaired by: Prof. Orlando Balderama 

Note: Allocated time for Oral Presentations: 15 min. talk  

Time Title of presentation First Author/Presenter 

09:45 – 10.00 

Urban flood forecasting based on 
hydraulic model by coupling of 
MIKE Flood and MIKE Urban: 
A case study of Tam Ky city, 
Vietnam 

Cong Nguyen Chi 

10:00 – 10:15 

Flood modelling in the Ba River 
basin using a coupled 
hydrodynamic model - MIKE 
FLOOD 

Tuan Luc Anh 

10:15 – 10:30 

Study on flood mitigation 
operation of cascading dams, 
including hydropower dams in 
Ohi river 

Yuki Okamoto 

10:30 – 10:45 
Flood Vulnerability Indicators of 
Transportation System 
Concerning Climate Change 

Hamizah Amalina Amlan 

10:45 – 11:00 

Stakeholders forum on 
integrated flood risk 
management in Cagayan River 
Basin: Basis in writing policy 
recommendations 

Orlando Balderama 

11:00 – 11:15 

Development of a localized 
integrated disaster risk index – A 
Malaysia case study of Langat 
River Basin 

Muhammad Wafiy Adli Ramli 

11:15 – 11:30 Open Discussion (Q&A)  

Poster Program- Session B (11.15 -12.00) 

Chaired by: Dr. Pham Hong Nga 

Note: Allocated time for Poster Presentations: 03 min. talk + 02 min. discussion  

Poster Code Title  First Author/Presenter 

B1 
 

Mapping Open Fire 
Susceptibility and Nearest Water 
Resources For Fire Fighting -A 
Case Study in Johor Malaysia 

Fara Aiza Md Sanin 

B2 

Response of long-term 
hydrological to land use/land 
cover change in Vu Gia Thu Bon 
River basin 

Thanh-Nhan-Duc Tran 

 



 
 

B3 

Modeling the urban flood during 
the heavy rain in October 2022 
for Ngu Hanh Son District, Da 
Nang City using SWMM model 

An Tran 

B4 

Nonparametric estimation 
approach for evaluating the trend 
of hydro-meteorological factors 
in Lại Giang, Binh Dinh. 

Thi Ngoc Canh Doan 

B5 

Impacts of drought on water 
resources in Central Vietnam. A 
case study of Vu Gia¬ Thu Bon 
River basin 

Binh Quang Nguyen 

B6 

Quantification of GPM IMERG 
and SM2RAIN-ASCAT rainfall 
products over complex terrain 
under impacts of reservoirs. A 
case study for Srepok River 
basin 

Thanh-Nhan-Duc Tran 

B7 
River System's Behavioral 
Changes: Response to Climate 
Change or Manmade? 

Kogila Vani Annammala 

B8 

Analysis of spatial and temporal 
variation in rainfall trend of Vu 
Gia Thu Bon River Basin, 
Vietnam 

Thao Bui Thi Phuong 

B9 

Spatio-temporal variability and 
trends of extreme rainfall and 
temperature events over 
Cagayan River Basin, 
Philippines 

Khagendra Bharambe 

B10 
Trends of low flow in the Vu 
Gia  - Thu Bon river basin, 
Central Vietnam 

Thi Ngoc Uyen Nguyen 

12:15 – 13:00 Extension of Poster Session with Lunch 

5th Session on Remote Sensing and GIS for Flood and Water Security 

Chaired by: Prof. Thai Nguyen Canh 

Note: Allocated time for Oral Presentations: 15 min. talk 

Time Title of presentation First Author/Presenter 

13:00 – 13:15 

Evaluation of water indices for 
dynamic monitoring reservoir 
surface water using Landsat 8 
data 

Anh Minh Vu 

 



 
 

13:15 – 13:30 
Impact of different types of 
vegetation in reducing roof 
runoff 

Noraliani Alias 

13:30 – 13:45 
Impacts of anthropogenic 
activities on riverbed elevation. 
A case study in Central Vietnam 

Binh Quang Nguyen 

13:45 – 14:00 

Livelihood resilience: salinity 
intrusion hazard assessment of 
and adaptation strategy for 
socio-economic development in 
Ben Tre Province 

Doan Van Binh 

14:00 – 14:15 

GIS-based flood susceptibility 
mapping using AHP approach: A 
case study of Kien Giang river 
basin, Quang Binh province 

Ngan Vu Huong 

14:15 – 14:30 Open Discussion (Q&A) 

6th Session on Hydrological Modelling and Sediment Management - C 

Chaired by Dr. Nor Eliza Alias 

Note: Allocated time for Oral Presentations: 15 min. talk 

Time Title of presentation First Author/Presenter 

14.30 – 14.45 

Hydrodynamic modelling of 
Magat dam and reservoir during 
extreme conditions using 
Telemac 2D 

Jeoffrey Lloyd R. Bareng 

14.45 – 15.00 
Evaluation of coastline change in 
Quang Nam under the influence 
of jetty construction 

Tran Tieu Long Trinh 

15.00 – 15.15 

Evaluation of hydrodynamic and 
sediment transport under 
construction of Cua Lo’s 

navigation channel 

Cong Phuc Dang 

15.15 – 15.30 
Two-dimensional numerical 
models in simulating hydro-
sediment-morphodynamics for 
the Vu Gia Thu Bon River basin 

Binh Quang Nguyen 

15.30 – 15.45 

Assessment of salinity intrusion 
trends along main rivers and 
coastal zones in the Vietnamese 
Mekong Delta 

Doan Nguyen Luyen Phuong 

15.45 – 16.00 Open Discussion (Q&A) 

  

 



 
 

7th Session on Climate Change and Sustainability 

Chaired by Prof. Hung The Nguyen 

Note: Allocated time for Oral Presentations: 15 min. talk 

Time Title of presentation First Author/Presenter 

16.00 – 16.15 

Assessment of water scarcity 
under the impact of climate 
change in the downstream Vu 
Gia Thu Bon river basin, 
Vietnam 

Mai Thi Thuy Duong 

16.15 – 16.30 

Probable maximum precipitation 
estimates considering 
homogeneous regions of 
Malaysia 

Nor Eliza Alias 

16.30 – 16.45 
Climate change intensifies 
drought vulnerability of magat 
sub basin in the Philippines 

Christian Alec Managa 

16.45 – 17.00 Open Discussion (Q&A)  

Awards and Closing Remarks  

17.00 – 17.30 Presentation of Awards and Closing Remarks 

18.30 – 21.00 2nd Gala Dinner at Hotel  

 

Committee for Poster: Prof. Mohamed Saber, Dr. Doan Van Binh, Dr. Pham Hong Nga, 

Dr. Lanie Alejo 

 

 

  

 



 
 

3rd day of FSMaRT2022 

(Tuesday, 20th of December) 
Field Excursion 

08.00 1st Meeting Place at Hotel Lobby 

08.15 2nd Meeting Place at University of Science and Technology 

09:15 Departure from University of Science and Technology by bus  

11:15 Arrival at A Vuong Hydropower at Thanh My Town, Nam Giang 
District, Quang Nam 

12:30 Lunch 

13:00 Departure from A Vuong Hydropower 

14:30 Arrival at CuaDai river mouth in Cam An ward, Hoi An city, Quang 
Nam province 

16:45 – 18:30 Visit Hoi An Ancient town, Japanese bridge, Tan Ky ancient house, 
Phuc Kien Assembly hall, Museum of Trade Ceramics, CamPho 
communal house, etc 

18:30  Dinner 

19:00  Return to Danang city 

20:00 Arrival at Danang city 
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1st Session on Hydrological Modelling 

and Sediment Management – A 

 
  



2 
 

Impact assessment of Son Tra wastewater treatment to the 

coast of Danang city, Vietnam 
 

Phuoc Quy An Nguyen1,*, Philippe Gourbesville1, Philippe Audra1, Ngoc Duong Vo2 

 
1 Polytech’Lab, University of Nice Sophia Antipolis, 930 route des Colles, 06410 Biot, 

France 
2The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang, 
Danang, Vietnam 
 
*Corresponding author: npqan@dut.udn.vn 
 
Abstract. Son Tra wastewater treatment plant (WWTP) is one of four WWTPs in Danang 
City. In most of the cases, the wastewaters are treated by WWTPs before discharging into the 
natural environment that is the coastal area or rivers. However, the treatment level does not 
ensure a sufficient performance for maintaining the quality of the receptive environment. 
This situation is currently faced in the Danang area where the significant impact has been 
detected in the receiving environment. In this study, Mike 21 FM Hydrodynamics module 
coupled to a water quality model using Mike 21 FM ECOLab module is applied to simulate 
the water quality and to identify the spreading of NH4+, which is used as a pollutant tracer. 
The study suggests three scenarios of NH4+ concentration in the wastewater of the Son Tra 
WWTP outlet are used to simulate the impact in the coastal area. The first scenario is that 
wastewater discharges from the outlet with the current NH4+ concentration (15 mg/l). 
Second, after some failure with Son Tra WWTP because of power outage or damages, 
therefore, wastewater discharge directly to the coast with a higher NH4+ concentration (25 
mg/l) for 24 hours. Third, wastewater is treated to follow the regulation of industrial 
wastewater (10 mg/l). Out of the three proposed scenarios, the polluted area of scenario 1 is 
similar to scenario 2. However, scenario 2 generates the largest polluted area with NH4+  
concentration > 1.9 mg/l. Scenario 3 has the smallest polluted area along the coast and the 
NH4+ peak concentration is lower than 1.7 mg/l. 
 
Keywords. Son Tra WWTP, NH4+ concentration, Mike 21 FM ECOLab, coastal area, 
scenario 
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Application of Rainfall-Runoff Inundation model to forecast 

Magat dam inflow and water elevation 

 
Arlen S. Alejandro1, Lanie A. Alejo2, Carlo C. Ablan3, Orlando F. Balderama4 

Tetsuya Sumi5, and Sameh Ahmed Kantoush6 
 
1,3 National Irrigation Administration, Magat River Integrated Irrigation System, Dam and 
Reservoir Division, Ramon, Isabela, Philippines 
2,4 College of Engineering, Isabela State University, Echague, Isabela, Philippines 5,6 Water 
Resources Research Center - Disaster Prevention Research Institute Kyoto University, Kyoto, 
Japan 
 
*Corresponding author: arlenalejandro001@gmail.com 
 
Short abstract. Flood forecasting is vital in preventing and mitigating flood damage. Flood 
inundation can be simulated to forewarn the affected areas of the possible effect of floods 
brought by heavy rainfall events. Rainfall-runoff models need precise forecast rainfall. In this 
paper, the fully calibrated and validated Rainfall-Runoff Inundation Model utilized the 3- 
ensemble rainfall forecast that gives high, mid, and low forecast scenarios. It was tested on 
extreme weather events, typhoon Karding and Maymay. The result shows RRI simulated 
inflows and statistical values indicate unacceptable agreement with the actual inflow. 
However, it was satisfactory in terms of predicted water level. The ensemble is yet to be bias 
corrected. Generally, the use of the hourly prediction from the ensemble gave quite good 
results when translated to inflow and water elevation using the RRI. 
 
Keywords. Forecasting, runoff, ensemble 
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Ceres – A Citizen Science Approach Monitoring Reservoir 

Operation from space for poorly gauged reservoirs: A case 

study in Vu Gia Thu Bon. 

 
Du Le Thuy Tien 1, Hyongki LEE1, Duong Du Bui2, Son K. DO1,* , Ngoc Thi Nguyen1, 

Thao Thi Phuong Bui3, Nuong Thi Bui4, Tra T.T. NGUYEN2 
 
1 Department of Civil and Environmental Engineering, University of Houston, Texas, U.S.A. 
2 National Center for Water Resources Planning and Investigation (NAWAPI). No.93, lane 
95, Vu Xuan Thieu Street, Sai Dong Ward, Long Bien District, Ha Noi, Vietnam. 
3 Department of Urban Management, Water Resource Center, Disaster Prevention Research 
Institute (DPRI), Kyoto University, Kyoto 611-0011, Japan. 
4 Hanoi University of Natural Resources and Environment (HUNRE), Hanoi, Vietnam 
 
*Corresponding author: thuytien1025@gmail.com 
 
Abstract. This study creatively employs a well-known citizen science approach to constantly 
further improve our satellite based reservoir operation monitoring (CERES) tool, enhance 
end-users’ trust, acceptance and uptake of the tool and consequently support water resources 
decision making processes for users. Our CERES is a cloud-based interactive web app with 
freely available datasets for non-commercial uses based on multi-mission satellite datasets, 
including Sentinel-1 C-band Synthetic Aperture Radar Ground Range Detected (SAR GRD), 
Shuttle Radar Topography Mission (SRTM) Digital Elevation Models (DEM), Advanced 
Land Observing Satellite (ALOS) and Multi-Error-Removed Improved-Terrain (MERIT) 
DEM. Its graphical user interface design allows non programming users to interact with 
maps, generate results, evaluate them with provided templates and optionally email 
performance metrics and figures back to developers for further improvement without granting 
developers of access to the local observed data. 
 
Keywords. Monitoring, remote sensing, citizen science, reservoirs, poorly-gauged, Vu Gia 
Thu Bon River basin 
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Vulnerability assessment of riverbank erosion: a case study of 

Vietnamese Mekong Delta 
 

Menna F.AHMED1, Doan Van BINH2, Nguyen Phuong MAI3, Sameh A.KANTOUSH1 

, and Tetsuya SUMI1 
 
1 Water Resources Research Center, Disaster Prevention Research Institute, Kyoto 
University (Goka-sho, Uji-shi, 611-011, Kyoto), Japan 
2 Faculty of Engineering, Vietnamese –German University, (Ben Cat Town, Binh Duong 
Province), Vietnam 
3 Thuyloi University-Southern Campus (No.2 TruongSa Street, HoChiMinh City), Vietnam 
 
*Corresponding author: Menna F. Ahmed, Email: ahmed.zaki.27d@st.kyoto-u.ac.jp 
 
Abstract. Over decades, the Vietnamese Mekong Delta (VMD) has suffered severe coastal 
and riverbank erosions resulting in serious social, economic, and environmental impacts. 
Several natural and anthropogenic key factors contribute to the rising riverbank erosion rate 
in VMD, such as flood depletion, rainfall extremes, high water waves and currents, soft 
alluvial soils, excessive sand mining, increasing river traffic, and sediment reduction caused 
by upstream river damming. Although few studies have estimated the long-term riverbank 
erosion in VMD using remote sensing and numerical models, no study has assessed the 
eroded sediment volume due to the riverbank. In this paper, we quantitatively evaluated the 
eroded volumes due to riverbank erosion along VMD by field survey, remote sensing, and a 
two- dimensional (2D) hydromorphodynamic numerical model. The model combines the 
river hydro and morpho-dynamics computer models TELEMAC-2D and GAIA of the open 
source TELEMAC-MASCARET for investigating flow and sediment transport in open 
channels at large temporal and spatial scales. The field surveys revealed that the riverbanks 
near the estuaries (about 50-80km from the river mouth) are alternately eroded and deposited; 
however, erosion is dominant (Fig. 1). Erosion takes place even in some vegetated areas. We 
also found that some aquaculture ponds had to leave redundant due to riverbank erosion that 
cut off some ponds (Fig. 1, left panel). The results show changes in riverbank position for the 
next 50 years within the study area due to riverbank migration, i.e., accretion and erosion. It 
also shows that the general patterns of erosion and deposition at the main rivers and channels 
are represented reasonably well when seasonal river discharge is used. The model has been 
calibrated and validated with the collected field data between 2014 and 2019. This research 
serves as a developed reference in predicting the riverbank instability numerically, as to be 
considered in decision support strategies of the river system. 
 
Keywords. Mekong delta, Riverbank erosion, 2D numerical modeling 
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Hydropeaking process in Vu Gia Thu Bon River basin: 

Causes, consequences, and main driven 

 
Binh Quang Nguyen1,2,*, Thinh Hung Nguyen2, Thanh-Nhan-Duc Tran3, Ngoc Duong 

Vo2, Sameh A. Kantoush1, Tetsuya Sumi1 

 

1 Water Resource Center, Disaster Prevention Research Institute (DPRI), Kyoto University, 
Kyoto 611-0011, Japan 
2 The University of Danang - University of Science and Technology, 54 Nguyen Luong 
Bang, Danang, Vietnam 
3 Department of Engineering Systems and Environment, University of Virginia, 
Charlottesville, VA 22904, USA 
 
*Corresponding author: Binh Quang Nguyen (nqbinh@dut.udn.vn) 
 
Abstract. Quantifying river flow change is important to understand the impacts of 
hydropower generation to water resources. Energy demand fluctuates at sub-daily scales, 
which may cause changes in regulated river flow (e.g., hydropeaking) resulting in the 
decrease of water supply and the increase of salinity intrusion. In this study, we investigated 
the influence of increasing hydropower generation on hydropeaking for the Vu Gia Thu Bon 
(VGTB) River basin, Central Vietnam. We used the analytical method to quantify the 
difference of water level in daily scale including the reservoir operation. This study used 
hourly water level data between 2018 and 2022 from seven hydrological stations within the 
VGTB River basin. Our key findings indicated that hydropeaking is at high levels in the 
VGTB River and has seen an increase over the last decade, especially over the past few years. 
 
Keywords. Hydropeaking, Reservoir, Water level, Salinity intrusion, Water supply, Vu Gia 
Thu Bon River 
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Reviewing on flood simulation using hydrological models 

 
Nguyen Thien Son1, Huang Guangwei1 

 
1 Graduate School of Global Environmental Studies, Sophia University, Tokyo, 102-8554, 
Japan 
 
*Corresponding author: sonnt01.iwe@gmail.com 
 
Abstract. Since ancient times, people over the world have often faced the dangers caused by 
various types of natural disasters including floods. Along with the development of modern 
science and technology facilities, flood disaster events have been increasingly studied and 
modeled, thereby developing preparedness, minimization and early warning systems. In this 
paper, we evaluate the available recent research on flood simulation on river basins using 
hydrological models. We distinguish between studies focusing on flood flow simulations 
using (i) rainfall-runoff models, (ii) hydrological models combining hydraulic models, remote 
sensing images and (iii) the models take into account land use changes, climate change and 
the operation of hydropower dams in the basin. We discuss the differences in the model’s 
inputs and the accuracy in flood flow simulation mentioned in the studies. This allows to 
clarify the influence of the model’s inputs on the flood flow simulation results to improve the 
accuracy in process of flood flow simulation. We also emphasize the characteristics and scale 
of the simulated watershed. The purpose of this assessment is to find out limitations in 
existing flood simulation methods to improve not only methodologies but also network 
design and monitoring system in order to increase the simulation accuracy and especially in 
flood forecasting to minimize flood risks and optimize the use of water resources in the basin. 
 
Keywords. Flood simulation, hydrological models, accuracy, watershed 
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Monitoring the shoreline change in the coastal area of Da 

Nang City, Vietnam using time-series satellite imageries and 

Google Earth Engine platform 
 

Van An Nguyen, Thi An Tran, Ngoc Hanh Le and Thi Ngoc Nguyen 
 
Abstract. Shorelines are sensitive and vulnerable to human activities including urbanization, 
land reclamation and sediment loading. The deterioration of coastal ecosystems brought on 
by human activity may be reflected in shoreline changes. Therefore, it is important to 
understand shoreline dynamics. A significant source for analyzing changes in coastal 
ecosystems is earth observation data, such as multitemporal satellite imageries. In this 
research, we used Google Earth Engine (GEE) to monitor and map historical shoreline 
dynamics in the coastal zone of Da Nang City which is currently an attractive tourism 
destination of Viet Nam. Landsat imagery from 1986 to 2022 was processed in Google Earth 
Engine to calculate the MNDWI. Subsequently, applying a thresholding method, we have 
determined the water bodies that extracted the shoreline by different times. The change 
detection method in remote sensing has been employed to evaluate the shoreline dynamics in 
Da Nang coastal area. The results indicate that in the study area, the shoreline has moved by 
more than 5 km in the last decades, accounting for approximately 500 km2 of land accretion. 
The proposed methodology can be applied to other coastal zones in various regions and 
scaled up to larger areas. 
 
Keywords. Google Earth Engine, remote sensing, shoreline dynamics, Da Nang city 
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Abstract. Urban flooding is one of the significant issues that many cities are dealing with. 
Upgrading of the drainage systems is a common measure that is often used to address the risk 
of flooding. However, due to the effects of climate change, global sea levels are rising and 
extreme rainfall is increasing in both frequency and intensity. These has affected the flow, 
resulting in flooding in many cities worldwide. Among the types of models, the storm water 
management model (SWMM) is chosen for this research because it is widely accepted in 
academic and engineering communities. This research assessed the impacts of urbanization 
on the formulation of the flow at an urban catchment in An Ha, Tam Ky, Quang Nam. The 
results showed that urbanization contributes to reduce the flow loss through infiltration into 
the ground. When the degree of urbanization increases by more than 70%, the efficiency of 
flow reduction decreases rapidly, and the effects of urbanization are clearer for long rain 
duration. 
 
Keywords. LID, urban flooding, urbanization, Tam Ky, storm water management  
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Short abstract. The modelling of water flow at a T-junction is challenging due to complex 
fluid dynamics behavior. The flow mechanisms and dynamics need to be quantified before  
they can be used for river analysis such as riverbed scouring, riverbank erosion and water 
overtopping at the T-junction. This paper presents some validation and verification results of 
2D and 3D modelling of the T-junction then compared with previous experimental works. 
The 2D simulation used the Menter's Shear Stress Transport   (SST) and Low 
Reynolds  (LRE) turbulence models which solved by finite element method (FEM) 
using COMSOL Multiphysics. The 3D simulation used the Re-Normalization Group (RNG) 
turbulence model solved by finite volume technique (FVM) through FLOW-3D. The 2D 
simulation result was validated and verified using separation length (SL) that occurred at the 
branch channel of the T-junction. The results of 3D simulation were validated and proved the 
3D RNG turbulence model can replicate the previous experimental result in term of discharge 
ratio (Qr) which is the ratio of discharge in the branch to the upstream discharge with 
minimal difference from experimental work. The 2D SST turbulence model shows better 
result compared to the 3D RNG simulation and experimental data. The dynamics behavior of 
the water in term of pressure and velocity of the T-junction were discussed. The study shows 
that 2D turbulence model is sufficient for riverbank and river details analysis with some 
limitations. 
 
Keywords. Turbulence modelling, RNG, SST, Low Reynolds , T-junction 
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Abstract. In this study, we investigated a linkage between sediment diagenesis and harmful 
algal blooms in the Bay of Quinte, an embayment of Lake Ontario, Canada. Although a 
strong decline of external P loading to the Bay of Quinte during last decades, it still 
experiences harmful cyanobacterial algal blooms, which were hypothesized to be connected 
to nutrient loading from sediments. However, the linking sediment diagenesis with harmful 
algal blooms remain largely unknown. Our modelling framework integrated physical and 
biogeochemical processes at the sediment water interface (SWI) and incorporated dynamic 
boundary conditions, such as oxygen, soluble reactive phosphorus concentrations and organic 
matter sedimentation at the SWI. In the model, total P was divided into adsorbed, redox-
sensitive, organic, aluminum-bound, and apatite forms. In this study, the Aquasim model was 
used and applied to link sediment diagenesis with harmful algal blooms of a eutrophic 
system, the Bay of Quinte, Canada. Our sediment diagenesis modelling results show that P 
burial efficiency critically increased after the period of external P loading reduction in 1970s 
corresponding to the decrease in total P, chlorophyll and most major phytoplankton groups in 
the water column. 
 

Keywords. Phosphorus release, phosphorus burial efficiency, sediments, diagenetic 
modelling  
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Abstract. The riverbank erosion-accretion is mainly a physical process of river dynamics, 
reflecting the correlation between the flow and the channel, linked to the sediment balancy. 
Prediction of riverbank erosion-accretion plays crucial role for localy riverbank social 
economic development as well as for whole region. This study presents the results of Mike 
models (Mike11RR, HD, ST and Mike 21C) application to simulate the riverbed evolution 
(erosion, accretion). Compared with realistic changes, the results showed that the ability of 
simulation modelling is acceptable for Vu Gia – Thu Bon River basin. The riverbed change 
prediction according to the scenario of development and real-time approaches was calculated 
with updating boundary conditions of rain and erosion. From the simulation results, a map of 
the erosion risk was built to help risk management authorities and communities in riverbank 
erosion disasters proactive responding. 
 
Keywords. Riverbank erosion, MIKE 21C, MIKE 21C, Vu Gia – Thu Bon 
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Abstract. Reservoir sedimentation reduces storage capacity and shortens the lifespan of the 
dams. This paper seeks to the potential risk of reservoir sedimentation in Batu Dam, 
Malaysia. It is based on literature and findings from related studies on the sedimentation of 
the Batu Dam reservoir. Based on the feasibility study in 1980, the allowable annual 
sediment trapped was 40,000 m3/year as designed. Sediment accumulation for 50-year and 
100-year sediment analysis is 1.85 m3 x 106 and 3.70 m3 x 106 respectively. According to 
the bathymetric survey in 2013, sedimentation occurs upstream of Batu Dam. Followed by the 
Formal Safety Inspection in 2015 reported that sedimentation was trapped at the lowest screen 
of the intake tower. It is proven by a previous sampling study in 2016 that most of the 
sedimentation categories as course material accumulated at the river mouth of Batu River 
upstream of the reservoir. Historical satellite images also capture the increase of area by 
sedimentation. An earlier remote sensing study in 2018 reported that sediment volume from 
1987 until 2017 was about 7.31 million m3. Although this dam reservoir is designed to 
accommodate a certain amount of sedimentation, it is essential to keep monitoring 
sedimentation to manage a sustainable reservoir. The overall findings of this paper can assist 
in making better decisions for reservoir management. 
 

Keywords. reservoir sedimentation, bathymetric survey, sediment sampling, satellite image, 
Batu Dam 
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Abstract. The increase of salt intrusion in recent years in the DinhAn and TranDe branches 
two of seven estuaries of the Mekong estuaries, has threatened the freshwater supply in the 
coastal regions, of Tra Vinh province. Combining the field survey and numerical modelling 
to investigate the salt transport mechanisms and the response of salt intrusion to changes in 
river discharge and tidal mixing have been conducted. The results of this research in the daily 
tidal cycle are that maximum salinity concentration (Smax) occurs at the bottom and later 
maximum water level from 1 to 2 hours. While Smax in the fortnight cycle appears during 
the transition period from neap tide to spring tide. The response of the salinity intrusion 
mechanism to the tidal velocity change is less than the river flow. However, when river flow 
increases, the impact of tidal velocity increases and the phase lag of response time decreases. 
The asymmetries of salt intrusion responding to increasing and decreasing river flow or tidal 
velocity are observed in the estuary.  
Keywords. Salinity intrusion, Mekong estuary, tidal regime, tidal velocity 
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Abstract. In the Upper Srepok River Basin (USRB), one of the major tributaries with four 
cascade reservoirs already in place that may have negative effects on the downstream 
ecosystems, particularly the world's rice bowl in the Mekong Delta and the world's most 
productive inland fisheries in the Tonle Sap Lake, a process-based hydrological model was 
established. Changes in simulated streamflow and suspended sediment concentration (SSC) 
can therefore be linked to modifications in reservoir operations by maintaining the same 
climatic conditions, altering topographic factors associated to reservoirs, and introducing a 
reservoir management module. Both the annual and seasonal periods saw a sharp decline in 
the average and peak SSC. Sediment loads at the Ban Don station were 15% (140 000 
tons/year) lower than they were before the dam was built. 
 
Keywords. Srepok, HYPE, reservoirs, suspended sediment concentration 
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Abstract. Climate change threatens the world with disastrous floods and droughts, with 
Japan, Vietnam, and the Philippines among the worst-affected countries. This management 
paper highlights collaboration with Japanese and Vietnamese universities in implementing 
the international project “Integrated Flood and Sediment Management in River Basins for 

Sustainable”. Kyoto University transferred its technologies on flood and sediment 
management to Isabela State University and Thuyloi University thru trainings. The impacts 
of climate change and human interventions were assessed in the Vu Gia-Thu Bon River basin 
(Vietnam) and Cagayan River basin (Philippines). Bathymetry survey in the Magat dam 
showed reduced capacity of the reservoir due to sedimentations. Hence, funding for the 
dredging of the Magat dam was secured. Also, it was projected that climate change and 
landuse changes will significantly reduce water resources during dry years leading to 
droughts, and will abruptly increase during wet years leading to flooding. The rainfall-runoff-
inundation model was locally optimized as a decision support tool for flood inundation 
forecast and upgrade dam discharge protocol during extreme rainfall events. The 
International Association on Climate Change Adaptation and Disaster Risk Reduction 
Management was created and registered as a science- government-community association to 
address Integrated Flood and Sediment management in river basins. 
 
Keywords. Flood and sediment management, river basins 
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Abstract. In the Mekong Delta, riverbed sand and gravel are usually over-extracted due to 
the increasing demand for materials for the construction industry. As a result, the river bed is 
often deeper, about two to three meters. Numerous studies have been published focusing on 
the morphological response induced by river sand mining in the short and long term. 
Nevertheless, the impact of elevation loss on the hydrodynamic processes in the mixing layer 
of compound channels at the reach scale is unclear, especially during the flooding stage. In 
order to obtain more insight, a schematised model of a vegetated compound channel in the 
Tieu Estuary was constructed in Delft3D. Different riverbed elevations were considered 
together with different vegetation densities on the floodplain. The numerical results reveal a 
significant modification of the outer layer in the mixing layer due to river sand mining, which 
may create unfavorable conditions for the lateral exchange of nutrients and sediment between 
the floodplain region and the main open channel. 
 
Keywords. Sand mining, compound channel, vegetation, hydrodynamic, numerical model, 
mixing layer 
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Abstract. The Philippines has experienced several intense and devastating typhoons 
imposing significant threats to human lives and urban development. Therefore, this study 
aims to understand the flood characteristics by simulating the extreme Typhoon Ulysses at 
the Cagayan River, focusing on the Magat dam. Several scenarios have been conducted, 
including an assessment of the contribution of each sub-catchment and dam operations during 
the typhoon and an examination of additional proposed dams at the other sub-catchment. 
Rainfall-Runoff Inundation Model (RRI) was used and examined with four scenarios: a 
model without a dam, a constant discharge model and a constant rate discharge model for the 
operation of the Magat dam, and a case where the Magat dam and a new additional dam were 
installed. We found that some sub-basins had higher runoff than others. As for the operation 
of the Magat dam, the sedimentation countermeasures and pre-release of the Magat dam have 
flood control effects, but they are insufficient. It is expected that a proposed dam at the 
Cagayan Segment 1 could improve the flood risk in the downstream regions. Further 
scenarios considering the ensembled Rainfall data are needed to enhance dam operations and 
control flood impacts. 
 
Keywords. Cagayan River Basin, Magat dam, dam operation, RRI model 
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Abstract. Addressing sedimentation problems in dam reservoirs is a process that involves 
identifying its sources and application of different techniques to monitor and reduce the 
further accumulation of sediment yield. This paper explains the results of the initiatives and 
collaborative efforts to focus on the issue of sedimentation in the Magat Dam reservoir. 
Recent 2021 bathymetric survey revealed that there is a reduction in the storage capacity by 
65.34 MCM. From the turbidity measurements, results showed an average volume of 
202,187.90 m3 of sediments for May. Structural and nonstructural ways to alleviate the 
impacts of sedimentation was done through the construction of sediment catchment structures 
and raising awareness on the importance of watershed resources through community 
extension seminar. 
 
Keywords. Reservoir, sedimentation, techniques 
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Abstract. Model accuracy and running speed are the two key issues for flood warnings in 
rivers. Traditional hydrodynamic models, which have a rigorous physical mechanism for 
flood routine, have been widely adopted for water level prediction in the river, lake, and 
urban areas. However, requiring various types of data, some expertise and experience with 
models and intensive computation time limits short-term or real-time prediction of the 
traditional models. To achieve a real-time prediction for the water level, a new framework 
based on a machine learning method was proposed in this paper. We develop a water level 
prediction model using various machine learning models such as linear regression (LR), 
support vector regression (SVR), random forest regression (RFR), multilayer perceptron 
regression (MLPR), and light gradient boosting machine regression (LGBMR). The models 
compared to predict the hourly water levels in Kien Giang station of Kien Giang river based 
on collected data of 2012, and 2020. Three evaluation criteria, i.e., R2, MAE, and RMSE, 
were employed to examine the reliability of the proposed models with others. The results 
show that the LR model outperforms the SVR, RFR, MLPR, and LGBMR models. 
 
Keywords. LGBMR, linear regression, machine learning, MLPR, SVR, RFR, water level 
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Abstract. Time-series prediction of a river stage during natural disasters (such as typhoons 
and storms) is crucial for both flood control and flood disaster prevention. Data-driven 
models using deep learning (DL) techniques have proven to be an attractive and effective 
approach for water level prediction. This paper proposes a novel data-driven approach using 
deep learning network structures of Gated Recurrent Unit (GRU), Long Short-Term Memory 
(LSTM), and Bidirectional Long-Short Term Memory (Bi-LSTM). The models were 
implemented and validated based on an experimental dataset including observed data of 
hourly rainfall and water level at several meteorological and hydrological stations along the 
Kien Giang river. Two time leads scenarios of one and three hours were established to 
compare the prediction capability of three proposed models for the water level at Le Thuy 
station. Three evaluation metrics, i.e. R2, MAE, and RMSE, are used to evaluate DL models. 
The results reveal that the LSTM model overperformed the Bi-LSTM and GRU models with 
the values of three metrics are 0,98; 0,068; 0,096 respectively. 
 
Keywords. Bi-LSTM, Deep learning, GRU, LSTM, Le Thuy, Water level prediction 
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Abstract. Flood forecasting is critical for mitigating flood damage and ensuring a safe 
operation of hydroelectric power plants and reservoirs. The authors introduce a hybrid 
hydrological model based on the combination of the HEC-HMS hydrological model and an 
Encoder-Decoder-Long Short-Term Memory network in this study to enhance the accuracy 
of a real-time flood forecasting. The proposed hybrid model has been applied to the Krong 
H’nang hydropower reservoir. The observed data from 33 floods monitored between 2016 

and 2021 are used to calibrate, validate, and test the hybrid model. Results show that the 
HEC-HMS-ANN hybrid model significantly improves the forecast quality, especially for long 
forecasting time steps. The KGE efficiency index, for example, increased from ∆KGE = 16% 

at time t + 1 to ∆KGE = 69% at time t + 6 hours, similar to other indicators (such as peak 
error and volume error). The computer program developed for this study is being used at the 
KrongHnang hydropower to aid in reservoir planning, flood control, and water resource 
efficiency. 
 
Keywords. Hydrological hybrid model, HEC-HMS, machine learning, KrongH’nang, real- 
time flood forecasting 
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Abstract. Vietnam has experienced many natural disasters, particularly typhoons. This study 
aims to examine three machine learning (ML) approaches—random forest (RF), LightGBM, 
and CatBoost—for flooding susceptibility maps (FSMs) in the Vu Gia-Thu Bon (VGTB) 
River Basin of Vietnam. The results of ML are compared with those of the rainfall–runoff 
model. Ten independent factors that influence the FSMs in the study area, namely, aspect, 
rainfall, curvature, DEM, horizontal distance from the river, geology, hillshade, land use, 
slope, and stream power index, are assessed. An inventory map that includes approximately 
850 flooding sites is considered based on several post-flood surveys. The inventory dataset is 
randomly divided into two sets: training (70%), and testing (30%). The AUC- ROC results 
are 97.9%, 99.5%, 99.5% for CatBoost, LightGBM, and RF, respectively. The FSMs 
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developed by the ML methods show good agreement in terms of extension with flood 
inundation maps developed using the rainfall-runoff model. The FSMs show that downstream 
areas (both urbanized and agricultural) are under “high” and “very high” levels of 

susceptibility. The developed FSMs for such typhoon-prone regions can be used by decision-
makers and planners in Vietnam to propose effective mitigation measures for community 
resilience and development. 
 
Keywords. Machine learning, random forest, LightGBM, CatBoost, flood susceptibility 
mapping, rainfall-runoff inundation model 
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Abstract. Tam Ky city is located downstream of Ban Thach and Tam Ky rivers in central 
Vietnam. According to annual statistics, this area is affected by heavy rains from tropical 
storms, so flooding is quite common here. This study establishes a flood forecasting model 
for Tam Ky city based on forecasted rainfall data and tidal level. A flood forecasting model is 
based on a proceeding of rainfall-runoff and is connected between the river basin and the city. 
The parameters of the flood forecasting model are calibrated and verified for floods that have 
occurred on rivers as well as in urban areas. An experimental flood forecast for Typhoon 
Nuru has just occurred on September 28, 2022. The forecast results of location and depth 
flooding in the city reflect the reality very well. 
 
Keywords. MIKE Flood, MIKE Urban, Tam Ky City.  
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Abstract. The problem of flooding in the Central Vietnam in general and the lower Ba River 
in particular is one of the natural disasters that frequently threatens people's lives and socio-
economic development in the region. Especially, climate change is becoming ever more 
prominent and hotter, making extreme natural disasters more unusual and unpredictable. 
Many methods have been applied and shown to be effective in calculating floods. Under the 
development of science and technology, many hydrodynamic models were developed, and 
they have become speedy in the era of compatitive computer industry leading to parallel 
computation. In this study, the MIKE-FLOOD model - a model that connects a 1- 
dimensional (1-D) MIKE 11 Hydrodynamics (HD) model with a 2- dimensional (2-D) MIKE 
21 HD model was used to set up , calculated for 3 floods: (1) flood in October 1993, (2) flood 
in November 2003, (3) flood in November 2007, these are floods with frequency large and 
relatively large floods, especially the October 1993 flood is considered a historic flood in the 
region. The model testing correction indexes such as flood peak error (%), Nash index, 
correlation index R2, are in good range and reliable enough to simulate large and relatively 
large floods for the area. The results of calculation and analysis of the flooded area compared 
with the inundation time of the October 1993 flood, show that the flood rises quickly and 
recedes quickly. When the flood water level reaches the maximum value, the total area affected 
by inundation corresponding to the flood water level is 22,600 hectares, accounting for 52% 
of the natural area, up to 16.500 hectares are flooded deeper than 1 meter, 11.000 hectares 
are flooded deeper 2 meters, 7.000 hectares were flooded more than 3 meters deep, 4.200 
hectares were flooded more than 4 meters deep and the area flooded more than 5 meters deep 
was 2.200 hectares. The 2003 flood and the 2007 flood are two frequent floods in the basin, 
with a frequency of 20%, the flooded area when H max occurs at points in the study area is not 
much different compared with the exceptionally large flood of 1993 with a frequency of 5%, 
differing only in the value of each point. Especially in the center of Tuy Hoa city, the flooded 
area at the time of H max is almost 100%. 
With the set of parameters set up in this paper, it gives us relatively accurate results in terms 
of quantity, type of flood and time of occurrence. Therefore, it can be used to simulate and 
predict floods for the Ba River downstream. 
 
Key words. Flooding, coupled hydrodynamic model, MikeFlood model, Ba River basin  
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Abstract. Dam pre-release is an effective measure against large-scale floods, whereas its 
implementation period is limited. In addition, there are a few considerations of pre-release in 
cascading dams, including hydropower dams. This study investigated the effect on the 
maximum discharge of each dam as the flood control effects and the discharge loss of 
hydropower dams, which directly connect to hydropower generation, by changing the start  
time and target water level of pre-release in cascading dams. By advancing the start time and 
increasing the target water level drawdown, the pre-release effects on flood control and water 
utilization have increased. 
 
Keywords. Pre-release, cascading dams, hydropower, RRI model 
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Abstract. Transportation moves people and goods to different neighborhoods, cities,  states, 
and countries. Transportation systems have included the concept of vulnerability, which has 
piqued the interest of academics in numerous disciplines of transportation. This is intended to 
increase the efficiency of transportation systems and mitigate the effects of disruptions. 
However, climate change is likely to impair transportation infrastructure by increasing 
temperatures, causing more severe storms and flooding, and increasing storm surges, 
compromising the reliability and capacity of transportation systems. Past works relating to 
transportation vulnerability had focused on different elements of vulnerability indicators and 
they have developed a more comprehensive concept. As a result, this paper offers a 
comprehensive review of vulnerability indicators concerning climate change. The primary 
focus of the study is to explore the flood vulnerability indicators considering the tropical 
climate in Malaysia. Based on this, prior research on transportation system vulnerabilities is 
examined in order to define the criteria required to assess transportation system vulnerability 
as well as the future directions of transportation vulnerability assessment. 
 
Keywords. Climate Change, Flood, Indicator, Transportation System, Vulnerability 
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Abstract. The stakeholders forum aimed to enhance the capacities of policymakers, 
managers, and practitioners of river basin organizations on flood management through 
knowledge sharing of new approaches, techniques, methodologies, and good practices from 
partners here and abroad to help achieve effective implementation of integrated flood risk 
management as a component of integrated water resources management. Considering the 
designed series of activities, the forum highlighted the partnership of the Japan Water Agency 
and the Cagayan River Basin Management Council, a multipartite information exchange 
among the Philippine government agencies’ dignitaries, political leaders and legislators, and 

Japanese stakeholders, and the update reports conveyed by numerous Philippine government 
agencies as well as their collaborative workshop engagement to scale up international 
community linkages. It also underscored the inauguration of the International Organization 
on Climate Change Adaptation and Disaster Risk Reduction Management Office, 
stakeholders’ collaboration for technology transfer and knowledge-sharing activities at NIA 
stations, and the newly forged partnership between JWA and City of Santiago to promote 
UN-SDG 6 and water security. Thus, the forum served as a channel that bridged what the 
government agencies and organizations know about flood and sedimentation management 
and what the community partners need to understand to revitalize science-community-
government-academe collaboration. 
 
Keywords. knowledge sharing, technology transfer, water security, integrated water 
resources management, flood and sedimentation management 
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Abstract. Multiple disasters in Malaysia are observed to occur more frequently. This is due 
to impact of urbanization and climate change. Flood, landslide, debris flow and earthquakes 
are among distinct natural disaster seems to have great impact to the community. When it 
comes to community resilience, multi-vulnerability assessment is needed for a proper disaster 
management strategy. The index was developed by expanding on the multi-hazard spatial 
overlapping and Methods for the Improvement of Vulnerability Assessment in Europe 
(MOVE) theoretical framework. Two common hazards in Malaysia: floods and landslides 
were combined for the multi-hazard assessment. Multidimensional vulnerability combined 
six dimensions: social, economic, physical, institutional, environmental and cultural. A 
spatial vulnerability assessment is presented by mapping the risk val. The findings indicate 
that of the total areas in Langat River Basin, 14% has very high risk in which are urban areas. 
A validation of the index model was able to be done when a disastrous flood in December 
2021 occurred at Langat River Basin. Assessment from the disaster impact data shows that 
one of  the vulnerability dimensions which is areas with high institutional vulnerability were 
well correlated to the poor coordination or late emergency aid during the disaster. 
 
Keywords. Multi-hazard, multi-vulnerability, disaster risk, Risk map 
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Abstract. Open fire releases toxic gasses and pollutant to air and can be destructive to the 
ecological, environmental and human infrastructure. Different methods and techniques for 
open fire susceptibility mapping are introduced according to the literature and can be 
classified into three groups: Probabilistic, statistical, and machine learning methods. In this 
research, we utilized the Random Forest (RF) machine learning approach for identifying the 
role of climatic and anthropogenic factors in influencing fire occurrence probability and 
mapping the open fire susceptibilty for Johor State: Malaysia. A geo-database was 
established with 1726 Open fire sample locations and 12 predictor variables in total.  Factor 
importance analysis was performed to identify the important factors of the occurrence of open 
fire in Johor state. The results show that the most important factor in the johor state region is 
distance to peatland. Additionally mean maximum temperature and distance to residential area 
are relatively important to open fire in Johor state. The model performance was evaluated 
using the receiver operating characteristic (ROC) curve method with AUC (Area under curve) 
value 0.86. The values of AUC using the best models are greater than 0.8, demonstrating that 
the model’s predictive abilities are acceptable. The susceptible map can support future efforts 

in battling open fire and help local authorities in emergency planning. River and water body 
map overlayed on open fire map to calculate the distance of suceptible area to the nearest 
water resources. 
 
Keyword. Open fire, susceptibility, random forest, fire fighting 
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Abstract. The Vu Gia Thu Bon River basin, Vietnam, is an important watershed supporting 
drinking water, and agricultural activities in Central Vietnam. However, the potential 
hydrological impacts of LULC change in recent decades, are not quantified. Therefore, 
assessing long-term hydrological impacts of land use/land cover (LULC) change is of critical 
importance for land use planning and water resource management. This work would assess 
the long-term impacts of LULC change on streamflow and suspended sediment 
concentration. LULC records are collected annually from Launch Regional Land Cover 
Monitoring System (RLCMS) from SERVIR–Mekong between 1987 – 2018. Our key 
findings indicate interesting results, in which the simulated streamflow and sediment loads 
within this river basin have decreased due to deforestation. Thus, these findings would serve 
as a scientific basis for future management plans of stakeholders and decision-makers 
regarding water resources management. 
 
Keywords. Land use/land cover (LULC) change, streamflow, suspended sediment 
concentration, vu gia thu bon, vietnam 
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Abstract. Urban flooding is one of the challenges by large cities in Vietnam, especially in Ha 
Noi, Ho Chi Minh, and Da Nang cities which are the largest cities in the country. The process 
of urbanization under the context of climate change is one of the causes of urban flooding in 
recent years. Therefore, the simulations of urban flood and drainage systems in typical rain 
are important to build the warning map of the risk to the local community. The main 
objective of this study is to use GIS modeling to warn of the risk of local flooding in some 
routes in Ngu Hanh Son district, Da Nang City during the heavy rain in October 2022 which 
is considered the most severe rainfall in the past 20 years. The main purpose of the simulation 
of urban drainage in Ngu Hanh Son through the October 2022 rain is to determine a reasonable 
set of hydrological- hydraulic parameters for the construction of hazard warning maps for 
flooding due to rain. Within the scope of the paper, we will present the results of the urban 
drainage simulation for Ngu Hanh Son district by using the Storm Water Management Model 
(SWMM) model with in- situ rainfall data on October 14th, 2022. 
 
Keywords. Da Nang City, Ngu Hanh Son, urban flood, heavy rain, SWMM 
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Abstract. With the purpose of analyzing trend variations of hydro-meteorological factors in 
Lai Giang catchment, as a basis for the planning as well as socio-economic development of 
the locality in the future, the research uses the nonparametric estimation method to evaluate 
the tendency of changes in rainfall, runoff and temperature at stations in the basin. Based on 
data of more than 40 years, from 1980 to 2020, hydro-meteorological factors are analyzed with 
different parameters, such as annual average, annual maximum, annual minimum, dry season 
average, and maximum daily rainfall, three-day maximum rainfall, etc. Research results show 
the change of factors in space as well as over time. At the same time, the study also builds up 
the trend equation of the research quantities, as a basis for future scenario assessment. 
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Abstract. Severe droughts cause substantial damage to different socio-economic sectors, and 
even Vietnam, which has abundant water resources, is not immune to their impacts. To assess 
the implications of a severe drought in Central Vietnam, we carried out a regional-scale 
drought impact analysis. We have assessed extreme to moderate drought events starting from 
1980 to 2020 using the Standardized Runoff Index (SRI) drought classification. The runoff is 
collected from observation and the results of the Soil and Water Assessment Tool (SWAT) 
hydrological model. The results indicate that the long-lasting drought caused a significant 
decrease every year. Thus, we suggest that the resilience to droughts could be improved with 
region-specific drought management plans and by including droughts in existing regional 
preparedness exercises. 
 
Keywords. Central Vietnam, drought, Standardized Runoff Index (SRI), SWAT 
  

mailto:nqbinh@dut.udn.vn


2 
 

Quantification of GPM IMERG and SM2RAIN-ASCAT 

rainfall products over complex terrain under impacts of 

reservoirs. A case study for Srepok River basin 

 

Thanh-Nhan-Duc Tran1, Binh Quang Nguyen2,* 
 
1 Department of Engineering Systems and Environment, University of Virginia, 
Charlottesville, VA 22904, USA 
2 Faculty of Water Resources Engineering, The University of Da Nang-University of Science 
and Technology, Da Nang 550000, Vietnam 
 
*Corresponding author: nqbinh@dut.udn.vn 
 
Abstract. Precipitation has a direct link to the water cycle and remains the primary driver to 
study climatic extremes. The impact of precipitation on key variables such as soil moisture is 
complicated to observe in nature and is often poorly represented. In this work, we validate 
two precipitation products namely (i) the Global Precipitation Measurement mission (GPM) 
integrated Multi-satellite Retrievals (IMERG), (iii) SM2RAIN-Advanced SCATerometer 
(SM2RAIN-ASCAT over Asia). The IMERG precipitation product is derived from multi- 
satellite precipitation product (top-down approach) and the SM2RAINASCAT is derived 
from surface satellite soil moisture (bottom up approach). Our key findings indicate the 
superior performance by GPM IMERG product over the Srepok River basin, in which 
impacts of new- built reservoirs were also included. 
 
Keywords. Precipitation, SM2RAIN-ASCAT, GPM IMERG, Srepok River basin, Vietnam 
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Abstract: Modification of landscape directly implicate to the stream water quality by 
increasing the sediment and pollutants run off into river. The elevated terrestrial sediment 
deposition has impacted river morphologies, channel patterns, and affected its quality. This 
has emerged as a matter of concern in terms of water security and catastrophic flooding 
especially in developing nations. Thus, a better understanding of sediment dynamics and 
distribution is crucial to advance the knowledge of fluvial systems and its behavioural 
changes particularly in the tropics: a case study from Malaysia on the reconstruction of 
temporal sediment dynamics, identification of sediment sources, and quantification of the 
respective contributing sediment sources is presented, alongside with the impacts to river 
water quality. Storm events are one of the main causes of mobilization and transport of 
solutes into and within stream channels. The nonlinearity of solute transport during storm 
events is evident. Land-use and land cover changes related to timber harvesting and 
conversion into agricultural plantation under various national economic plans and initiatives 
have been recognised as a major driver of sediment yield and delivery in studied watersheds. 
 
Keywords. Water quality index, sediment fingerprinting, multi proxy sediment, 
sedimentation 
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Abstract. This study examines rainfall spatial and temporal variation in the Vu Gia Thu Bon 
River basin from 1979 to 2021. The Mann-Kendall (MK) and Sen's Slope estimator test, 
which can determine rainfall variability and long-term monotonic trends, were utilized to 
analyze 16 rainfall stations that are distributed all over the river basin. The results showed 
that the pattern of annual rainfall was prevalent everywhere. Every location has a tendency to 
grow or to be insignificant. This pattern suggests that Vu Gia Thu Bon will have significantly 
more rainfall in the coming years. The examination of monthly rainfall yielded findings that 
10 areas had noticeable rising tendencies. Trends in rainfall suggest that this area has seen 
climate change. 
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Abstract. Extreme climate events, such as heavy rainfall, drought, flood, and heat waves, 
have become the most common natural disasters over the Cagayan River Basin. Addressing 
the consequences and the occurrence of these disasters has always a major challenge, due to 
increasing population and the impacts posed by extreme climate events. In order to help meet 
these challenges, this study has been undertaken considering the aim of evaluating of spatio- 
temporal variation of extreme climate events based on comprehensive assessment of extreme 
rainfall and temperature indices using long-term high-spatial-resolution climate data for 
worst-case (RCP8.5) climate change scenarios of MRI-AGCM3.2S data. The findings 
indicate an increased risk of extreme climate events such as extreme dry spells and extreme 
wet spells in future, which may lead to greater vulnerability to drought and flood over CRB. 
These findings would be a straightforward resource for addressing the high-risk zone and 
guiding disaster risk reduction authorities in making appropriate decisions for implementing 
adaptation strategies. 
 
Keywords. Extreme Climate Events, flood risk, drought risk, climate change adaptation, 
spatio-temporal changes 
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Abstract. Analysis of trends in low flow plays a significant role in water resource planning 
and operation. The main objective of this study is to examine the low flow trends as well as 
precipitation trends in the Vu Gia – Thu Bon during the period 1976 – 2014 non-parametric 
test Mann – Kendall. The analysis was carried out on monthly and annual time scales. 
Besides, the regime shift assessment was conducted to detect any abrupt change in the flow 
regimes. In addition, SPEI03 and SPEI06 were calculated in order to understand the drought 
situation in the same period. The results revealed that there is a significant upward linear 
trend in the annual precipitation by 17.03 mm/year between 1976 and 2014. However, the 
month-by-month analysis revealed that the increased precipitation primarily was during the 
rainy season. For the flows in Vu Gia and Thu Bon rivers, there are similar increasing trends 
in the discharges at the Thanh My station by approximately 1.617 m3/s and Nong Son station 
by 2.725 m3/s, respectively. Still, the increasing trends with the most significant ones being 
identified at seasonal rather than annual scale. Regarding the regime shifting, there were 
prominent alterations in some months during the dry season in 1999 which was recorded in 
February at Nong Son station (Thu Bon river) and in February, April, May, and July at Thanh 
My station (Vu Gia river). Additionally, the examination of drought identified a decline in 
drought occurrences' frequency, duration, and intensity for the period post-2000. These 
findings will contribute numerous values to improve the integrated water resource 
management in the region. 
 
Keywords. Low flow, drought, Mann – Kendall test, Standardized Precipitation 
Evapotranspiration Index (SPEI) 
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Abstract. Consistent dynamic monitoring of surface water area is significantly essential for 
reservoirs operation and management. Threshold segmentation method is mostly used for 
surface water extraction by applying fixed water index thresholds, which can be incompatible 
for regions with distinct characteristics. This study aims to evaluate the most suitable 
thresholds for three widely used water indices, i.e. Normalized Difference Water Index 
(NDWI), Modified NDWI (MNDWI) and Automated Water Extraction Index (AWEI) for 
detecting and extracting surface water of Phu Hoa reservoir in Quang Binh province from 
Landsat-8 imagery. Google Earth Engine platform is used to automatically collect low 
cloudiness scenes, compute three proposed indices, then detect and extract water surface 
using different threshold values. Accuracy evaluation of the extraction results is carried out 
by calculating Overall Accuracy (OA) and Kappa coefficient (kappa) based on observed 
water level and reservoir characteristics curve. The results show that the most effective 
thresholds for NDWI, MNDWI and AWEI are -0.4, -0.25 and -0.55; with OA and Kappa 
vary from 92÷96% and 0.84÷0.89 respectively. Chosen thresholds are then adopted for 
monitoring the dynamic of surface water of Phu Hoa reservoir over the period 2013-2021 that 
supports decision makers in process of reservoir operation and management. 
 
Keywords. Landsat 8; Phu Hoa reservoir; Surface water extraction; Water indices 
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Abstract. Rapid development in urban area increased the flash flood occurrence. This is due 
to increasing of impervious surface in the urban area. Therefore, vegetated roof is introduced 
in order to reduce the peak discharge, velocity and quantity of the runoff generated during 
rainy season thus reducing flash flood occurrence. The objective of this study is to investigate 
the impact of different types of vegetation on roof runoff. Cow grass, carpet and pearl grass 
were selected to be installed on the roof. The vegetated roof was constructed in the laboratory 
and rainfall simulator was used in order to imitate the rainfall event. High intensity rainfall 
was implemented in this study. The results found that pearl grass was the best in reducing the 
volume of the roof runoff compared to cow and carpet grass. 
 
Keywords. Flash flood, vegetated roof, roof runoff, peak discharge, pearl grass, cow grass, 
carpet grass 
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Abstract. Anthropogenic activities such as dams and sand mining are considered as one of 
the main driving causes changes of in riverbed elevation in the Vu Gia Thu Bon (VGTB) 
River basin. Therefore, assessing the impact of human activities on riverbeds can provide 
scientific insight to understand the morphological change and complex hydrological as well 
as to develop strategies for VGTB river basin management and sustainability. In this study, 
the riverbed data (in 2010, 2015, 2018, and 2021) and sediment size (in 2021) were analyzed 
to further clarify the changes of dams upstream and sand mining. We find that the riverbed 
elevation changes from downstream dams on Vu Gia and Thu Bon Rivers by 68 km and 74 
km, respectively. The riverbed changes are greatly concentrated in the sand mining sites. The 
water level was driven by riverbed incision, and this is likely one of the main causes of the 
enhanced salinity intrusion. 
 
Keywords. Dams, sand mining, riverbed elevation, vu gia thu bon river 
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Abstract. The impacts of climate change and human activities have caused several 
hydrology-related challenges, such as severe drought and salinity intrusion, in the 
Vietnamese Mekong Delta. The study attempts to assess livelihood resilience in the Ben Tre 
Province under the increasing frequency of drought and salinity intrusion and to correlate 
salinity intrusion with resilience level geographically in four dimensions: social (community-
based); economic (finance-based); institutional (governance-based); and infrastructure 
(technical-based). These objectives were achieved by field surveys, questionnaires, and one-
dimensional hydrodynamic modelling. The results show that total community resilience in 
Ben Tre is a function of its subcomponents in social, economic, infrastructural, and 
institutional dimensions. The contribution of each subcomponent to the aggregated 
community resilience is relatively similar, indicating that it might necessitate a uniform 
change of all subcomponents to change the tendency of the overall resilience. Both overall 
and subcomponent resilience is inversely proportional to salinity concentration. The 
governance capacity in geographically challenged areas is less likely to receive the benefits of 
aid and local assistance, thus reducing their resilience and increasing their vulnerability. To 
improve the livelihood resilience for sustainable development in Ben Tre, not only technical 
measures but also governance capacity, institutional coordination, and community media need 
to be integrated. 
 
Keywords. Ben Tre, livelihood resilience, salinity intrusion 
 
 
 
 
 
 
 
 
 
 
 
 
 

mailto:binh.dv@vgu.edu.vn


12 
 

GIS-based flood susceptibility mapping using AHP approach: 

A case study of Kien Giang river basin, Quang Binh province 

 
Vu Huong Ngan1, Dinh Nhat Quang2,*, Pham Hong Nga2 
 
1 The Alliance of Bioversity International and Centre of International Agriculture, Tu Liem, 
Hanoi 10000, Vietnam 
2Faculty of Civil Engineering, Thuyloi University, Dong Da, Hanoi 10000, Vietnam  
 
*Corresponding author: quang.dinh@tlu.edu.vn 
 
Abstract. Flood is the most devastating and unpredictable risk in Vietnam. As flood defence 
measures are becoming increasingly popular, researches on comprehensive flood assessment 
and management are still limited at local and national levels. This paper focuses on flood 
assessment in the Kien Giang river basin, which suffers from particularly severe floods, using 
the combination between flood susceptibility mapping and Analytical Hierarchy Process 
(AHP). While susceptibility map provides holistic levels and extent of the flood-affected 
area, based on the main flood-causing criteria; the AHP technique give the pair-wise 
comparison matrix to calculate the factor weights. Flood-related factors include TWI, land 
use, land cover, elevation, slope, precipitation, NDVI were considered and defined as raster 
dataset with the resolution of 10m. The levels of flood susceptibility are classified into five 
classes, i.e. very low, low, moderate, high and very high. The results indicate that 35.2% of 
Kien Giang river basin is considered as high and very high level of susceptibility while 
moderate susceptibility accounts for 40.5%. The AHP results also show that elevation and 
precipitation influence the most to find areas susceptible to flooding. This research 
constitutes a qualitative and quantitative tool that can be widely applied to localities, 
therefore helps local authorities to mitigate damage caused by floods. 
 
Keywords. Analytical Hierarchy Process, flood susceptibility, GIS, Kien Giang river basin 
  

mailto:quang.dinh@tlu.edu.vn


13 
 

 
 

 

 

 

 

 

 

 

6th Session on Hydrological Modelling 

and Sediment Management - C 
 

 

 

 

 

 

 
  



14 
 

Hydrodynamic modelling of Magat dam and reservoir during 

extreme conditions using Telemac 2D 

 
Orlando F. Balderama1, Jeoffrey Lloyd R. Bareng2, Lanie A. Alejo3, Englebert O. 

Manmano4 

 

1 Vice President for Research, Development, Extension and Training, Isabela State 
University, Echague, Isabela, 3309, Philippines 
2 University Director/ Research and Development Services, Isabela State University, 
Echague, Isabela, 3309, Philippines 
3 Director/ Water Research and Development Center, Isabela State University, Echague, 
Isabela, 3309, Philippines 
4 SRS/Water Research and Development Center, Isabela State University, Echague, Isabela, 
3309, Philippines 
 
*Corresponding author: orly_isu@yahoo.com 
 
Abstract. In the case of Magat dam and reservoir, the significant storage capacity loss will 
indefinitely affect the agricultural production under the areas serviced by the said reservoir. 
This is in addition to the communities that depend on the reservoir for their domestic uses. 
Based on the accumulated sediment volume for the past five (5) years, the remaining storage 
capacity for the Magat Reservoir is now at around 570 MCM, in contrast with its 1.08 BCM 
designed capacity. With these data, it is only expected to get worse if no effective sediment 
management is employed. A purely hydrodynamic modelling is performed on Magat reservoir 
to evaluate the ability of Telemac 2D in simulating the actual flow during extreme events. 
The hydrodynamic behavior in the reservoir level was accurately reproduced using Telemac 
2D. This model was calibrated and validated using flow data during typhoons Rolly and 
Ulysses (November 2020) and Severe Tropical Storm Florita (August 2022). The simulated 
results showed that the applied model could precisely reproduce the outflow events. The 
hydrodynamic model is planned to be coupled with the sediment transport module “Gaia” to 

potentially understand the sediment transport dynamics of the Magat Dam and Reservoir. 
 
Keywords. hydrodynamic modelling, Magat dam and reservoir, Telemac 2D 
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Abstract. In recent years, coastal erosion and accretion have been observed and amplified 
along Quang Nam coast, which causes serious adverse impacts to inhabitants as well as rich 
ecological values along the coast. In the master plan for Cua Lo port, a jetty is constructed in 
the north of Cua Lo estuary to protect the harbor basin of the port from sediment deposition. 
In this study, the numerical model GENCADE is used to evaluate the changes of Quang Nam 
coastline, i.e. from Cua Dai estuary to Cua Lo estuary. Different values of model-specific 
parameters K1 and K2 have been examined to compare the calculated coastlines with the 
image-analyzed ones for evaluating the accuracy of the model. The results reveal that 0.4 and 
0.2 are the optimal values for the study area's empirical coefficients K1 and K2. The well-
validated model is then adopted to evaluate the coastline change under the influence of jetty 
construction. The GENCADE results indicate that after 10 years, 20 years and 50 years of 
operation, shoreline modifications reach a distance of 250 m, 360 m and 450 m toward the 
sea respectively. Finally, the length of the jetty will be proposed based on these accretion 
predictions. 
 
Keywords. Cua Lo port, GENCADE, Quang Nam coastline, sediment transport, shoreline 
change 
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Abstract. Cua Lo is one of the most potential areas for port economic development in Chu Lai 
Open Economic Zone, Quang Nam province. To protect navigation channel from 
sedimentation and waves, according to master plan, two jetties are constructed in the North 
and South Cua Lo by dredging and cutting through the sand spit in the North bank. Prediction 
the impacts of navigation channel construction and its protections on the hydrodynamic 
regime and deposition process plays an important role for the success of a port project. In this 
study, the numerical model Delft3D is developed to evaluate the morphodynamic change of 
Cua Lo, then calibrated and validated using the observed data in two survey campaigns in 
2019. The simulation results reveal that, in the positions with the highest wave height, the 
construction has had a significant effect of reducing wave height, the reduction is about 
0.8÷0.9 m, equivalent to 50% compared to the absence of jetties during Northeast monsoon 
period and 1÷1.16m in adverse conditions, such as floods and storms. In addition, the 
structures have flood drainage effect with the reduction of maximum water level of 0.8÷1.2m 
in comparison to the current situation. Moreover, in terms of deposition process, for the area 
of the new navigation channel between the two jetties, the constructions have effectively 
reduced the fluctuation of accretion and erosion, about 2500m3/year. 
 
Keywords. Cua Lo port, DELFT3D, hydrodynamics, sediment transport 
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Abstract. This study aims to establish a complete hydro-sediment-morphodynamics model 
(TELEMAC-2D + GAIA + NESTOR) and ensure the accuracy of the Vu Gia Thu Bon 
(VGTB) River basin located in Central Vietnam. The model has been calibrated and validated 
at six hydrological stations along the river system in 2019, 2020, 2021 and statistical 
indicators perform good results. The model is able to capture the peaks of water levels in all 
stations during flood events. The performance R2 are 0.78, 0.81, 0.95, 0.94, 0.92, and 0.96 at 
Hoi Khach, Ai Nghia, Cam Le, Giao Thuy, Cau Lau, Hoi An. Similarly, NSE values range 
from 0.74 at Ai Nghia station to 0.94 at Hoi Anstation. Moreover, RMSE values vary from 
0.041 m to 0.238 m. The simulation results of suspended sediment concentration also have 
good performance compared with data from turbidimeter and GoogleEarth Engine. The 
model has well simulated riverbed elevation changes from 2018 to 2021. The results of this 
study would serve as the primary reference for water resource and sediment management, 
flood control, hydropower development, and agricultural production. Meanwhile, it provides 
reliable research data and results for scientists, stakeholders, decision-makers, and local 
communities, to quickly adapt to climate change and ensure sustainable development for the 
VGTB River basin. 
 
Keywords. Two-dimensional, hydro-sediment-morphodynamics model, TELEMAC-2D, 
GAIA, NESTOR, Vu Gia Thu Bon River 
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Abstract. Research on the vulnerability assessment of the Vietnamese Mekong Delta (VMD) 
is a long story due to the booming challenges of climate change, sea level rise, and salinity 
intrusion. Remarkably, the salinity intrusion level in this delta has peaked at the highest level 
in the 21st century, minimizing the available farming productivity and continuously reducing 
agriculture's economic benefits. Therefore, this research attempts to assess the salinity 
intrusion trends along main rivers (i.e., Tien, Hau, Co Chien, Ham Luong) and coastal zones 
(i.e., East and West Vietnam Seas) to understand spatiotemporal variations of salinity 
intrusion in the VMD. To this end, we analyzed daily salinity concentration at various 
monitoring stations for more than two decades using several statistical analyses for different 
indicators of salinity levels. We found that the maximum salinity concentration at Tran De in 
the Hau River and Vam Kenh in the Tien River (which are near the river mouths) statistically 
decreased by 0.45 and 0.2 mg/L/year (p < 0.05), respectively. At other stations near the river 
mouth, salinity concentration was relatively stable over the period analyzed. However, 
salinity concentration statistically increased at stations far upstream from river mouths. This 
indicates that upstream development, such as river damming and sand mining, is the driving 
force of the intensifying salinity intrusion in inland areas through morphological degradation. 
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Abstract. The downstream Vu Gia-Thu Bon river basin supplies more than 90% of the water 
needed for home and industrial use in Da Nang. The water extraction point used to supply the 
Cau Do - Da Nang clean water factory has experienced an increase in salinization since 2012, 
which has had a significant influence on water use in the downstream area. The water at the 
Cau Do factory's extraction site has been salty for 119 days in the first half of 2019, 
necessitating additional pumps from the An Trach dam. The study used the following 
computation to get the water stress index (WSI) for 15 areas that make up the Vu Gia-Thu 
Bon river basin. In the assessment, the water demand for the ecosystem is also considered as 
a required amount of water in the basins. The MIKE SHE hydrological model with the full 
major processes in the hydrologic cycle including process models for evapotranspiration, 
overland flow, unsaturated runoff, groundwater flow, channel runoff and others are used to 
simulate river flows in the study area for the period of 1980– 2020 and to forecast for 2030. 
The study also found it important to distinguish subsurface from surface water when 
calculating the impact of freshwater extraction. The results show that: (1) Water shortages are 
more severe in the downstream regions than they are in the middle and upstream, particularly 
where water is being exploited for domestic and industrial use in Da Nang city. (2) Except for 
the times when the reservoirs release water, the majority of the WSI values between March 
and May 2020 are higher than 0.6, with a peak of a WSI of more than 3.4, signifying severe 
scarcity. The Quang Nam-Da Nang region's summer rainfall change in 2030 will drop from 
1.9 to 2.1% under the B1 low emission scenario, and the region is likely to experience more 
severe and extreme droughts. In comparison to 2020, the WSI grew by two times. Water 
shortages are expected to start earlier and remain longer in 2030, lasting from the beginning 
of February through September. (3) To address issues with drought, water scarcity, and 
salinity prevention in the context of climate change and sea level rise, the region needs 
proactive, suitable adaptation and planning for water resource management. In the 
downstream region of the Vu Gia river, alternatives for a safe water supply have also been 
suggested by the research. 
 
Keywords. Downstream Vu Gia – Thu Bon river basin, MIKE SHE model, Environmental 
Water Requirement, water stress index 
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Abstract. Probable maximum precipitation (PMP) values adopted  using  state boundaries 
had reported to increase due to substantial increase in atmospheric moisture content and 
consequent higher levels of moisture transport into storms. Homogeneous regions with 
similar rainfall characteristics are formed using L-moments method and adopted in the 
statistical PMP estimation for Malaysia. This research aims to assess the differences between 
the PMP values estimated using the extreme rainfall homogeneous regions compared to 
PMPs value estimated using conventional state-boundaries for 1-hour and 24-hour storm 
duration. The results were compared to projected rainfall from the Non-Hydrostatic Regional 
Climate Model (NHRCM). Results show that using rainfall data from 1969 to 2012, the PMP 
estimated using the homogeneous region have higher values compared to the PMP estimated 
using the state-boundaries. Moreover, the highest historical rainfall up to 2020 exceeds the 
PMP estimated using the state boundary but were not exceeded by the PMP estimated using 
the homogenous regions. The PMP estimated using the homogeneous region also have higher 
values than the highest projected rainfall obtained from NHRCM data (2079-2099). 
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Abstract. This study was conducted to assess the socio-economic impacts of climate change 
on the vulnerability of a significant river basin in the Philippines, the Magat River Basin, to 
drought by considering agriculture as the major sector of focus. The results of this study 
imply that the current drought susceptibility of Magat Watershed is at 1.9 – 3.39 min-max 
scale or from low to above moderate, where the basin's Sensitivity and Exposure, account for 
57% and 31% of the total vulnerability, respectively. And that the resulting adaptive capacity 
has a mitigating factor of only 12%, thereby construed to be very low. And is projected to 
increase in the future by up to 30% under climate change scenarios. 
 
Keywords. Climate change, drought, GIS, indicator, Magat watershed, vulnerability 
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