Skip to content

Asia-Pacific Network for Global Change Research

Asia-Pacific Network for Global Change Research

Read our Science Bulletin
Peer-reviewed publication

Phytoplankton Biomass Dynamics in the Strait of Malacca within the Period of the SeaWiFS Full Mission: Seasonal Cycles, Interannual Variations and Decadal-Scale Trends

Seasonal cycles, interannual variations and decadal trends of Sea-viewing Wide Field-of-view Sensor (SeaWiFS)-retrieved chlorophyll-a concentration (Chl-a) in the Strait of Malacca (SM) were investigated with reconstructed, cloud-free SeaWiFS Chl-a during the period of the SeaWiFS full mission (September 1997 to December 2010). Pixel-based non-parametric correlations of SeaWiFS Chl-a on environmental variables were used to identify the probable causes of the observed spatio-temporal variations of SeaWiFS Chl-a in northern, middle and southern regions of the SM. Chl-a was high (low) during the northeast (southwest) monsoon. The principal causes of the seasonality were wind-driven vertical mixing in the northern region and wind-driven coastal upwelling and possibly river discharges in the middle region. Among the three regions, the southern region showed the largest interannual variations of Chl-a. These variations were associated with the El Niño/Southern Oscillation (ENSO) and river runoff. Interannual variations of Chl-a in the middle and northern regions were more responsive to the Indian Ocean Dipole and ENSO, respectively, with atmospheric deposition being the most important driver. The most significant decadal-scale trend of increasing Chl-a was in the southern region; the trend was moderate in the middle region. This increasing trend was probably caused by environmental changes unrelated to the variables investigated in this study.

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.