Skip to content

Asia-Pacific Network for Global Change Research

Asia-Pacific Network for Global Change Research

Read our Science Bulletin
Peer-reviewed publication

Efficacy of vermitechnology integration with Upflow Anaerobic Sludge Blanket (UASB) and activated sludge for metal stabilization: A compliance study on fractionation and biosorption

Efficacy of vermi-transformation for metal partitioning and transformation from Upflow Anaerobic Sludge Blanket (UASB) and Activated Sludge (AS) was investigated. Sludge samples were mixed with cow dung (CD) in two combinations (1:1 (UASB/AS:CD)) & (2:1(UASB/AS: CD)). Fractionation study revealed that Zn, Cd & Pb were associated with reducible fractions, and Cr, Cu with oxidizable fractions. Higher removal efficiency for 1:1 (UASB/AS: CD) combination over 2:1 (UASB/AS: CD) implies the non-significant contribution of cow dung during the metal stabilization process. After vermi-remediation, maximum metal removal was achieved at 1:1 ratio than 2:1 in AS. In UASB, 1:1 ratio worked better for Cr, Zn & Cd, whereas for Cu & Zn 2:1 ratio resulted in efficient removal. Overall for both AS and UASB, efficiency was found to be higher in 1:1 treatment ratio. The value of Kd (Bio sorption) was highest in Cu followed by Cr, which indicates the closer association with the metal bound organic matter (R2 ≥ 0.99). Based on the compliance study between two estimated sorption coefficients Kd (Biosorption & Fractions), vermi-remediation was found to be effective for AS than UASB. Therefore, the obtained results clearly validate the feasibility of integration of vermi-remediation as a potential promising ecological techniques for removing metal contaminant from the wastewater. Further research is required to study the decontamination of emerging contaminants with such integrated technology, which have physico-chemical properties different than metal ions.

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.