Skip to content

Asia-Pacific Network for Global Change Research

Asia-Pacific Network for Global Change Research

Read our Science Bulletin
Peer-reviewed publication

How do weather and climate change impact the COVID-19 pandemic? Evidence from the Chinese mainland

The COVID-19 pandemic continues to expand, while the relationship between weather conditions and the spread of the virus remains largely debatable. In this paper, we attempt to examine this question by employing a flexible econometric model coupled with fine-scaled hourly temperature variations and a rich set of covariates for 291 cities in the Chinese mainland. More importantly, we combine the baseline estimates with climate-change projections from 21 global climate models to understand the pandemic in different scenarios. We found a significant negative relationship between temperatures and caseload. A one-hour increase in temperatures from 25 °C to 28 °C tends to reduce daily cases by 15.1%, relative to such an increase from −2 °C to 1 °C. Our results also suggest an inverted U-shaped nonlinear relationship between relative humidity and confirmed cases. Despite the negative effects of heat, we found that rising temperatures induced by climate change are unlikely to contain a hypothesized pandemic in the future. In contrast, cases would tend to increase by 10.9% from 2040 to 2059 with a representative concentration pathway (RCP) of 4.5 and by 7.5% at an RCP of 8.5, relative to 2020, though reductions of 1.8% and 18.9% were projected for 2080–2099 for the same RCPs, respectively. These findings raise concerns that the pandemic could worsen under the climate-change framework.

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.